A subject-independent pattern-based Brain-Computer Interface

While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method...

Full description

Bibliographic Details
Main Authors: Andreas Markus Ray, Ranganatha eSitaram, Mohit eRana, Emanuele ePasqualotto, Korhan eBuyukturkoglu, Cuntai eGuan, Kai Keng eAng, Cristián eTejos, Francisco Javier Zamorano, Francisco eAboitiz, Niels eBirbaumer, Sergio eRuiz
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-10-01
Series:Frontiers in Behavioral Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnbeh.2015.00269/full
_version_ 1818450495865356288
author Andreas Markus Ray
Ranganatha eSitaram
Ranganatha eSitaram
Mohit eRana
Mohit eRana
Emanuele ePasqualotto
Korhan eBuyukturkoglu
Cuntai eGuan
Kai Keng eAng
Cristián eTejos
Francisco Javier Zamorano
Francisco Javier Zamorano
Francisco eAboitiz
Niels eBirbaumer
Niels eBirbaumer
Sergio eRuiz
Sergio eRuiz
author_facet Andreas Markus Ray
Ranganatha eSitaram
Ranganatha eSitaram
Mohit eRana
Mohit eRana
Emanuele ePasqualotto
Korhan eBuyukturkoglu
Cuntai eGuan
Kai Keng eAng
Cristián eTejos
Francisco Javier Zamorano
Francisco Javier Zamorano
Francisco eAboitiz
Niels eBirbaumer
Niels eBirbaumer
Sergio eRuiz
Sergio eRuiz
author_sort Andreas Markus Ray
collection DOAJ
description While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e. happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to match their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.
first_indexed 2024-12-14T20:52:13Z
format Article
id doaj.art-8b84f2a5d99d4eecbc0759ce2cf92126
institution Directory Open Access Journal
issn 1662-5153
language English
last_indexed 2024-12-14T20:52:13Z
publishDate 2015-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Behavioral Neuroscience
spelling doaj.art-8b84f2a5d99d4eecbc0759ce2cf921262022-12-21T22:47:47ZengFrontiers Media S.A.Frontiers in Behavioral Neuroscience1662-51532015-10-01910.3389/fnbeh.2015.00269125969A subject-independent pattern-based Brain-Computer InterfaceAndreas Markus Ray0Ranganatha eSitaram1Ranganatha eSitaram2Mohit eRana3Mohit eRana4Emanuele ePasqualotto5Korhan eBuyukturkoglu6Cuntai eGuan7Kai Keng eAng8Cristián eTejos9Francisco Javier Zamorano10Francisco Javier Zamorano11Francisco eAboitiz12Niels eBirbaumer13Niels eBirbaumer14Sergio eRuiz15Sergio eRuiz16University of TuebingenUniversity of TuebingenPontificia Universidad Catolica de ChileUniversity of TuebingenGraduate School of Neural & Behavioral SciencesUniversité Catholique de LouvainUniversity of TuebingenInstitute for Infocomm ResearchInstitute for Infocomm ResearchPontificia Universidad Católica de ChileUniversidad del DesarrolloUniversidad del DesarrolloPontificia Universidad Católica de ChileUniversity of TuebingenOspedale San CamilloUniversity of TuebingenPontificia Universidad Católica de ChileWhile earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e. happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to match their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.http://journal.frontiersin.org/Journal/10.3389/fnbeh.2015.00269/fullNeurofeedbackBCICommon Spatial PatternsSubject-independent classificationEmotion imagery
spellingShingle Andreas Markus Ray
Ranganatha eSitaram
Ranganatha eSitaram
Mohit eRana
Mohit eRana
Emanuele ePasqualotto
Korhan eBuyukturkoglu
Cuntai eGuan
Kai Keng eAng
Cristián eTejos
Francisco Javier Zamorano
Francisco Javier Zamorano
Francisco eAboitiz
Niels eBirbaumer
Niels eBirbaumer
Sergio eRuiz
Sergio eRuiz
A subject-independent pattern-based Brain-Computer Interface
Frontiers in Behavioral Neuroscience
Neurofeedback
BCI
Common Spatial Patterns
Subject-independent classification
Emotion imagery
title A subject-independent pattern-based Brain-Computer Interface
title_full A subject-independent pattern-based Brain-Computer Interface
title_fullStr A subject-independent pattern-based Brain-Computer Interface
title_full_unstemmed A subject-independent pattern-based Brain-Computer Interface
title_short A subject-independent pattern-based Brain-Computer Interface
title_sort subject independent pattern based brain computer interface
topic Neurofeedback
BCI
Common Spatial Patterns
Subject-independent classification
Emotion imagery
url http://journal.frontiersin.org/Journal/10.3389/fnbeh.2015.00269/full
work_keys_str_mv AT andreasmarkusray asubjectindependentpatternbasedbraincomputerinterface
AT ranganathaesitaram asubjectindependentpatternbasedbraincomputerinterface
AT ranganathaesitaram asubjectindependentpatternbasedbraincomputerinterface
AT mohiterana asubjectindependentpatternbasedbraincomputerinterface
AT mohiterana asubjectindependentpatternbasedbraincomputerinterface
AT emanueleepasqualotto asubjectindependentpatternbasedbraincomputerinterface
AT korhanebuyukturkoglu asubjectindependentpatternbasedbraincomputerinterface
AT cuntaieguan asubjectindependentpatternbasedbraincomputerinterface
AT kaikengeang asubjectindependentpatternbasedbraincomputerinterface
AT cristianetejos asubjectindependentpatternbasedbraincomputerinterface
AT franciscojavierzamorano asubjectindependentpatternbasedbraincomputerinterface
AT franciscojavierzamorano asubjectindependentpatternbasedbraincomputerinterface
AT franciscoeaboitiz asubjectindependentpatternbasedbraincomputerinterface
AT nielsebirbaumer asubjectindependentpatternbasedbraincomputerinterface
AT nielsebirbaumer asubjectindependentpatternbasedbraincomputerinterface
AT sergioeruiz asubjectindependentpatternbasedbraincomputerinterface
AT sergioeruiz asubjectindependentpatternbasedbraincomputerinterface
AT andreasmarkusray subjectindependentpatternbasedbraincomputerinterface
AT ranganathaesitaram subjectindependentpatternbasedbraincomputerinterface
AT ranganathaesitaram subjectindependentpatternbasedbraincomputerinterface
AT mohiterana subjectindependentpatternbasedbraincomputerinterface
AT mohiterana subjectindependentpatternbasedbraincomputerinterface
AT emanueleepasqualotto subjectindependentpatternbasedbraincomputerinterface
AT korhanebuyukturkoglu subjectindependentpatternbasedbraincomputerinterface
AT cuntaieguan subjectindependentpatternbasedbraincomputerinterface
AT kaikengeang subjectindependentpatternbasedbraincomputerinterface
AT cristianetejos subjectindependentpatternbasedbraincomputerinterface
AT franciscojavierzamorano subjectindependentpatternbasedbraincomputerinterface
AT franciscojavierzamorano subjectindependentpatternbasedbraincomputerinterface
AT franciscoeaboitiz subjectindependentpatternbasedbraincomputerinterface
AT nielsebirbaumer subjectindependentpatternbasedbraincomputerinterface
AT nielsebirbaumer subjectindependentpatternbasedbraincomputerinterface
AT sergioeruiz subjectindependentpatternbasedbraincomputerinterface
AT sergioeruiz subjectindependentpatternbasedbraincomputerinterface