Prediction of floods using improved PCA with one-dimensional convolutional neural network
Forecasting floods have always been a difficult task due to the complexity of the available data. Machine learning techniques have been widely used to predict floods based on precipitation, humidity, temperature, water velocity, and level variables. However, most prior studies have examined the mont...
Hlavní autoři: | Tegil J. John, R. Nagaraj |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
KeAi Communications Co., Ltd.
2023-01-01
|
Edice: | International Journal of Intelligent Networks |
Témata: | |
On-line přístup: | http://www.sciencedirect.com/science/article/pii/S2666603023000131 |
Podobné jednotky
-
Monthly Rainfall Forecasting Using One-Dimensional Deep Convolutional Neural Network
Autor: Ali Haidar, a další
Vydáno: (2018-01-01) -
Flood Image Classification using Convolutional Neural Networks
Autor: Olusogo Julius Adetunji, a další
Vydáno: (2023-10-01) -
The need for training and benchmark datasets for convolutional neural networks in flood applications
Autor: Abdou Khouakhi, a další
Vydáno: (2022-06-01) -
Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems
Autor: Yue Shen, a další
Vydáno: (2019-04-01) -
Data‐driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks
Autor: Zifeng Guo, a další
Vydáno: (2021-03-01)