A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions

In this paper, we complement a study recently conducted in a paper of H.A. Mombeni, B. Masouri and M.R. Akhoond by introducing five new asymmetric kernel c.d.f. estimators on the half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"&...

Full description

Bibliographic Details
Main Authors: Pierre Lafaye de Micheaux, Frédéric Ouimet
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/20/2605
_version_ 1797513972407074816
author Pierre Lafaye de Micheaux
Frédéric Ouimet
author_facet Pierre Lafaye de Micheaux
Frédéric Ouimet
author_sort Pierre Lafaye de Micheaux
collection DOAJ
description In this paper, we complement a study recently conducted in a paper of H.A. Mombeni, B. Masouri and M.R. Akhoond by introducing five new asymmetric kernel c.d.f. estimators on the half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>, namely the Gamma, inverse Gamma, LogNormal, inverse Gaussian and reciprocal inverse Gaussian kernel c.d.f. estimators. For these five new estimators, we prove the asymptotic normality and we find asymptotic expressions for the following quantities: bias, variance, mean squared error and mean integrated squared error. A numerical study then compares the performance of the five new c.d.f. estimators against traditional methods and the Birnbaum–Saunders and Weibull kernel c.d.f. estimators from Mombeni, Masouri and Akhoond. By using the same experimental design, we show that the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators perform the best overall, while the other asymmetric kernel estimators are sometimes better but always at least competitive against the boundary kernel method from C. Tenreiro.
first_indexed 2024-03-10T06:25:04Z
format Article
id doaj.art-8babcab340c6486984fa10077f9b5bf5
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T06:25:04Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-8babcab340c6486984fa10077f9b5bf52023-11-22T19:02:32ZengMDPI AGMathematics2227-73902021-10-01920260510.3390/math9202605A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution FunctionsPierre Lafaye de Micheaux0Frédéric Ouimet1School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, AustraliaDepartment of Mathematics and Statistics, McGill University, Montreal, QC H3A 0B9, CanadaIn this paper, we complement a study recently conducted in a paper of H.A. Mombeni, B. Masouri and M.R. Akhoond by introducing five new asymmetric kernel c.d.f. estimators on the half-line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>, namely the Gamma, inverse Gamma, LogNormal, inverse Gaussian and reciprocal inverse Gaussian kernel c.d.f. estimators. For these five new estimators, we prove the asymptotic normality and we find asymptotic expressions for the following quantities: bias, variance, mean squared error and mean integrated squared error. A numerical study then compares the performance of the five new c.d.f. estimators against traditional methods and the Birnbaum–Saunders and Weibull kernel c.d.f. estimators from Mombeni, Masouri and Akhoond. By using the same experimental design, we show that the LogNormal and Birnbaum–Saunders kernel c.d.f. estimators perform the best overall, while the other asymmetric kernel estimators are sometimes better but always at least competitive against the boundary kernel method from C. Tenreiro.https://www.mdpi.com/2227-7390/9/20/2605asymmetric kernelsasymptotic statisticsnonparametric statisticsGamma kernelinverse Gamma kernelLogNormal kernel
spellingShingle Pierre Lafaye de Micheaux
Frédéric Ouimet
A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
Mathematics
asymmetric kernels
asymptotic statistics
nonparametric statistics
Gamma kernel
inverse Gamma kernel
LogNormal kernel
title A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
title_full A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
title_fullStr A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
title_full_unstemmed A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
title_short A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions
title_sort study of seven asymmetric kernels for the estimation of cumulative distribution functions
topic asymmetric kernels
asymptotic statistics
nonparametric statistics
Gamma kernel
inverse Gamma kernel
LogNormal kernel
url https://www.mdpi.com/2227-7390/9/20/2605
work_keys_str_mv AT pierrelafayedemicheaux astudyofsevenasymmetrickernelsfortheestimationofcumulativedistributionfunctions
AT fredericouimet astudyofsevenasymmetrickernelsfortheestimationofcumulativedistributionfunctions
AT pierrelafayedemicheaux studyofsevenasymmetrickernelsfortheestimationofcumulativedistributionfunctions
AT fredericouimet studyofsevenasymmetrickernelsfortheestimationofcumulativedistributionfunctions