Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters

Isocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma...

Full description

Bibliographic Details
Main Authors: Laura W. Taylor, John E. French, Zachary G. Robbins, Leena A. Nylander-French
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-07-01
Series:Frontiers in Genetics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fgene.2021.700636/full
_version_ 1818433229806370816
author Laura W. Taylor
John E. French
Zachary G. Robbins
Leena A. Nylander-French
author_facet Laura W. Taylor
John E. French
Zachary G. Robbins
Leena A. Nylander-French
author_sort Laura W. Taylor
collection DOAJ
description Isocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma and urine biomarker levels in exposed workers. Inter-individual epigenetic variance may also have a significant role in the observed biomarker variability following isocyanate exposure. Therefore, we determined the percent methylation for CpG islands from DNA extracted from mononuclear blood cells of 24 male spray-painters exposed to 1,6-hexamethylene diisocyanate (HDI) monomer and HDI isocyanurate. Spray-painters’ personal inhalation and skin exposure to these compounds and the respective biomarker levels of 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) in their plasma and urine were measured during three repeated industrial hygiene monitoring visits. We controlled for inhalation exposure, skin exposure, age, smoking status, and ethnicity as covariates and performed an epigenome-wide association study (EWAS) using likelihood-ratio statistical modeling. We identified 38 CpG markers associated with differences in isocyanate biomarker levels (Bonferroni < 0.05). Annotations for these markers included 18 genes: ALG1, ANKRD11, C16orf89, CHD7, COL27A, FUZ, FZD9, HMGN1, KRT6A, LEPR, MAPK10, MED25, NOSIP, PKD1, SNX19, UNC13A, UROS, and ZFHX3. We explored the functions of the genes that have been published in the literature and used GeneMANIA to investigate gene ontologies and predicted protein-interaction networks. The protein functions of the predicted networks include keratinocyte migration, cell–cell adhesions, calcium transport, neurotransmitter release, nitric oxide production, and apoptosis regulation. Many of the protein pathway functions overlap with previous findings on genetic markers associated with variability both in isocyanate biomarker levels and asthma susceptibility, which suggests there are overlapping protein pathways that contribute to both isocyanate toxicokinetics and toxicodynamics. These predicted protein networks can inform future research on the mechanism of allergic airway sensitization by isocyanates and aid in the development of mitigation strategies to better protect worker health.
first_indexed 2024-12-14T16:17:47Z
format Article
id doaj.art-8bbac9cec40045d5935bc1d57b57adb0
institution Directory Open Access Journal
issn 1664-8021
language English
last_indexed 2024-12-14T16:17:47Z
publishDate 2021-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Genetics
spelling doaj.art-8bbac9cec40045d5935bc1d57b57adb02022-12-21T22:54:53ZengFrontiers Media S.A.Frontiers in Genetics1664-80212021-07-011210.3389/fgene.2021.700636700636Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-PaintersLaura W. Taylor0John E. French1Zachary G. Robbins2Leena A. Nylander-French3Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United StatesNutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United StatesDepartment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United StatesDepartment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United StatesIsocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma and urine biomarker levels in exposed workers. Inter-individual epigenetic variance may also have a significant role in the observed biomarker variability following isocyanate exposure. Therefore, we determined the percent methylation for CpG islands from DNA extracted from mononuclear blood cells of 24 male spray-painters exposed to 1,6-hexamethylene diisocyanate (HDI) monomer and HDI isocyanurate. Spray-painters’ personal inhalation and skin exposure to these compounds and the respective biomarker levels of 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) in their plasma and urine were measured during three repeated industrial hygiene monitoring visits. We controlled for inhalation exposure, skin exposure, age, smoking status, and ethnicity as covariates and performed an epigenome-wide association study (EWAS) using likelihood-ratio statistical modeling. We identified 38 CpG markers associated with differences in isocyanate biomarker levels (Bonferroni < 0.05). Annotations for these markers included 18 genes: ALG1, ANKRD11, C16orf89, CHD7, COL27A, FUZ, FZD9, HMGN1, KRT6A, LEPR, MAPK10, MED25, NOSIP, PKD1, SNX19, UNC13A, UROS, and ZFHX3. We explored the functions of the genes that have been published in the literature and used GeneMANIA to investigate gene ontologies and predicted protein-interaction networks. The protein functions of the predicted networks include keratinocyte migration, cell–cell adhesions, calcium transport, neurotransmitter release, nitric oxide production, and apoptosis regulation. Many of the protein pathway functions overlap with previous findings on genetic markers associated with variability both in isocyanate biomarker levels and asthma susceptibility, which suggests there are overlapping protein pathways that contribute to both isocyanate toxicokinetics and toxicodynamics. These predicted protein networks can inform future research on the mechanism of allergic airway sensitization by isocyanates and aid in the development of mitigation strategies to better protect worker health.https://www.frontiersin.org/articles/10.3389/fgene.2021.700636/fullepigenome-wide association study (EWAS)epigenetics (DNA methylation)biomarkersexposure assesmentisocyanatesbioinformatics
spellingShingle Laura W. Taylor
John E. French
Zachary G. Robbins
Leena A. Nylander-French
Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
Frontiers in Genetics
epigenome-wide association study (EWAS)
epigenetics (DNA methylation)
biomarkers
exposure assesment
isocyanates
bioinformatics
title Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
title_full Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
title_fullStr Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
title_full_unstemmed Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
title_short Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters
title_sort epigenetic markers are associated with differences in isocyanate biomarker levels in exposed spray painters
topic epigenome-wide association study (EWAS)
epigenetics (DNA methylation)
biomarkers
exposure assesment
isocyanates
bioinformatics
url https://www.frontiersin.org/articles/10.3389/fgene.2021.700636/full
work_keys_str_mv AT laurawtaylor epigeneticmarkersareassociatedwithdifferencesinisocyanatebiomarkerlevelsinexposedspraypainters
AT johnefrench epigeneticmarkersareassociatedwithdifferencesinisocyanatebiomarkerlevelsinexposedspraypainters
AT zacharygrobbins epigeneticmarkersareassociatedwithdifferencesinisocyanatebiomarkerlevelsinexposedspraypainters
AT leenaanylanderfrench epigeneticmarkersareassociatedwithdifferencesinisocyanatebiomarkerlevelsinexposedspraypainters