Some Remarks on Fuzzy <i>sb</i>-Metric Spaces
Fuzzy strong <i>b</i>-metrics called here by fuzzy sb-metrics, were introduced recently as a fuzzy version of strong <i>b</i>-metrics. It was shown that open balls in fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s&l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/12/2123 |
_version_ | 1797546537358721024 |
---|---|
author | Tarkan Öner Alexander Šostak |
author_facet | Tarkan Öner Alexander Šostak |
author_sort | Tarkan Öner |
collection | DOAJ |
description | Fuzzy strong <i>b</i>-metrics called here by fuzzy sb-metrics, were introduced recently as a fuzzy version of strong <i>b</i>-metrics. It was shown that open balls in fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces are open in the induced topology (as different from the case of fuzzy <i>b</i>-metric spaces) and thanks to this fact fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metrics have many useful properties common with fuzzy metric spaces which generally may fail to be in the case of fuzzy <i>b</i>-metric spaces. In the present paper, we go further in the research of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces. It is shown that the class of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces lies strictly between the classes of fuzzy metric and fuzzy <i>b</i>-metric spaces. We prove that the topology induced by a fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric is metrizable. A characterization of completeness in terms of diameter zero sets in these structures is given. We investigate products and coproducts in the naturally defined category of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces. |
first_indexed | 2024-03-10T14:31:12Z |
format | Article |
id | doaj.art-8bcb57d407324578a2eadde726afb4ff |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T14:31:12Z |
publishDate | 2020-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-8bcb57d407324578a2eadde726afb4ff2023-11-20T22:33:05ZengMDPI AGMathematics2227-73902020-11-01812212310.3390/math8122123Some Remarks on Fuzzy <i>sb</i>-Metric SpacesTarkan Öner0Alexander Šostak1Department of Mathematics, Muğla Sıtkı Koçman University, Muğla 48000, TurkeyInstitute of Mathematics and CS and Department of Mathematics, University of Latvia, LV-1586 Riga, LatviaFuzzy strong <i>b</i>-metrics called here by fuzzy sb-metrics, were introduced recently as a fuzzy version of strong <i>b</i>-metrics. It was shown that open balls in fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces are open in the induced topology (as different from the case of fuzzy <i>b</i>-metric spaces) and thanks to this fact fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metrics have many useful properties common with fuzzy metric spaces which generally may fail to be in the case of fuzzy <i>b</i>-metric spaces. In the present paper, we go further in the research of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces. It is shown that the class of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces lies strictly between the classes of fuzzy metric and fuzzy <i>b</i>-metric spaces. We prove that the topology induced by a fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric is metrizable. A characterization of completeness in terms of diameter zero sets in these structures is given. We investigate products and coproducts in the naturally defined category of fuzzy <inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>b</mi></mrow></semantics></math></inline-formula>-metric spaces.https://www.mdpi.com/2227-7390/8/12/2123fuzzy metricfuzzy <i>sb</i>-metricfuzzy <i>b</i>-metric |
spellingShingle | Tarkan Öner Alexander Šostak Some Remarks on Fuzzy <i>sb</i>-Metric Spaces Mathematics fuzzy metric fuzzy <i>sb</i>-metric fuzzy <i>b</i>-metric |
title | Some Remarks on Fuzzy <i>sb</i>-Metric Spaces |
title_full | Some Remarks on Fuzzy <i>sb</i>-Metric Spaces |
title_fullStr | Some Remarks on Fuzzy <i>sb</i>-Metric Spaces |
title_full_unstemmed | Some Remarks on Fuzzy <i>sb</i>-Metric Spaces |
title_short | Some Remarks on Fuzzy <i>sb</i>-Metric Spaces |
title_sort | some remarks on fuzzy i sb i metric spaces |
topic | fuzzy metric fuzzy <i>sb</i>-metric fuzzy <i>b</i>-metric |
url | https://www.mdpi.com/2227-7390/8/12/2123 |
work_keys_str_mv | AT tarkanoner someremarksonfuzzyisbimetricspaces AT alexandersostak someremarksonfuzzyisbimetricspaces |