Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties
Current work reports biogenic synthesis and physico-chemical characterization of silver nanoparticles (AgNPs) by using Aloe barbadensis miller leaves extract (ALE). The prepared biogenic AgNPs have been characterized physico-chemically by X-ray powder diffraction (XRD), UV-visible spectrometry, atte...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-08-01
|
Series: | Applied Surface Science Advances |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666523923000612 |
_version_ | 1797755828046921728 |
---|---|
author | Mayuri Mahadev Ghatage Pranoti Avinash Mane Rutuja Prashant Gambhir Vishakha Suryakant Parkhe Pranoti Anil Kamble C.D. Lokhande Arpita Pandey Tiwari |
author_facet | Mayuri Mahadev Ghatage Pranoti Avinash Mane Rutuja Prashant Gambhir Vishakha Suryakant Parkhe Pranoti Anil Kamble C.D. Lokhande Arpita Pandey Tiwari |
author_sort | Mayuri Mahadev Ghatage |
collection | DOAJ |
description | Current work reports biogenic synthesis and physico-chemical characterization of silver nanoparticles (AgNPs) by using Aloe barbadensis miller leaves extract (ALE). The prepared biogenic AgNPs have been characterized physico-chemically by X-ray powder diffraction (XRD), UV-visible spectrometry, attenuated total reflectance infrared spectroscopy (ATR-IR), Atomic force microscopy (AFM) and Field emission- scanning electron microscopy (FE-SEM). The characteristic highest absorption peak at 439 nm confirmed the synthesis of AgNPs. Further, the biomedical and catalytic potential of AgNPs was investigated by their anticancer, antioxidative, antimicrobial, and photocatalytic properties. The anticancer potential of AgNPs was evaluated against the breast cancer (MCF-7) cells using MTT cytotoxicity assay. AgNPs proved to be anticancer even for the minimum concentrations of 10 µg/ml, and the anticancer efficiency was increased with increase in concentration. AgNPs showed 42.51% free radical scavenging activity due to their antioxidative nature. 0.3 M AgNPs showed maximum antimicrobial activity with 20 mm zone of inhibition against E. coli bacteria. Additionally, the AgNPs were tested for photocatalytic dye degradation of eosin, crystal violet, carbol fuchsin, methylene blue, and saffranine dyes with maximum % degradation 70.76%, 95.54%, 94.63%, 93.53%, and 90.12%, respectively. The study is unique as the biosynthesized silver nanoparticles by using Aloe barbadensis miller leaves extract shows promising anticancer, antioxidative, antimicrobial, and photocatalytic properties. Herein, the present study reveals the potential of biosynthesized AgNPs for improved therapeutic and catalytic applications. |
first_indexed | 2024-03-12T17:51:41Z |
format | Article |
id | doaj.art-8bcde2c7c000468a9d5762bddaaab040 |
institution | Directory Open Access Journal |
issn | 2666-5239 |
language | English |
last_indexed | 2024-03-12T17:51:41Z |
publishDate | 2023-08-01 |
publisher | Elsevier |
record_format | Article |
series | Applied Surface Science Advances |
spelling | doaj.art-8bcde2c7c000468a9d5762bddaaab0402023-08-03T04:23:41ZengElsevierApplied Surface Science Advances2666-52392023-08-0116100426Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic propertiesMayuri Mahadev Ghatage0Pranoti Avinash Mane1Rutuja Prashant Gambhir2Vishakha Suryakant Parkhe3Pranoti Anil Kamble4C.D. Lokhande5Arpita Pandey Tiwari6Stem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaStem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaStem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaStem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaStem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaStem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaCorresponding author.; Stem cell and Regenerative Medicine and Medical Biotechnology department, D. Y. Patil Education Society, Kolhapur, Maharashtra 416006, IndiaCurrent work reports biogenic synthesis and physico-chemical characterization of silver nanoparticles (AgNPs) by using Aloe barbadensis miller leaves extract (ALE). The prepared biogenic AgNPs have been characterized physico-chemically by X-ray powder diffraction (XRD), UV-visible spectrometry, attenuated total reflectance infrared spectroscopy (ATR-IR), Atomic force microscopy (AFM) and Field emission- scanning electron microscopy (FE-SEM). The characteristic highest absorption peak at 439 nm confirmed the synthesis of AgNPs. Further, the biomedical and catalytic potential of AgNPs was investigated by their anticancer, antioxidative, antimicrobial, and photocatalytic properties. The anticancer potential of AgNPs was evaluated against the breast cancer (MCF-7) cells using MTT cytotoxicity assay. AgNPs proved to be anticancer even for the minimum concentrations of 10 µg/ml, and the anticancer efficiency was increased with increase in concentration. AgNPs showed 42.51% free radical scavenging activity due to their antioxidative nature. 0.3 M AgNPs showed maximum antimicrobial activity with 20 mm zone of inhibition against E. coli bacteria. Additionally, the AgNPs were tested for photocatalytic dye degradation of eosin, crystal violet, carbol fuchsin, methylene blue, and saffranine dyes with maximum % degradation 70.76%, 95.54%, 94.63%, 93.53%, and 90.12%, respectively. The study is unique as the biosynthesized silver nanoparticles by using Aloe barbadensis miller leaves extract shows promising anticancer, antioxidative, antimicrobial, and photocatalytic properties. Herein, the present study reveals the potential of biosynthesized AgNPs for improved therapeutic and catalytic applications.http://www.sciencedirect.com/science/article/pii/S2666523923000612AnticancerAntimicrobialAntioxidativeBiosynthesisPhotocatalyticSilver nanoparticles |
spellingShingle | Mayuri Mahadev Ghatage Pranoti Avinash Mane Rutuja Prashant Gambhir Vishakha Suryakant Parkhe Pranoti Anil Kamble C.D. Lokhande Arpita Pandey Tiwari Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties Applied Surface Science Advances Anticancer Antimicrobial Antioxidative Biosynthesis Photocatalytic Silver nanoparticles |
title | Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties |
title_full | Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties |
title_fullStr | Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties |
title_full_unstemmed | Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties |
title_short | Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties |
title_sort | green synthesis of silver nanoparticles via aloe barbadensis miller leaves anticancer antioxidative antimicrobial and photocatalytic properties |
topic | Anticancer Antimicrobial Antioxidative Biosynthesis Photocatalytic Silver nanoparticles |
url | http://www.sciencedirect.com/science/article/pii/S2666523923000612 |
work_keys_str_mv | AT mayurimahadevghatage greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT pranotiavinashmane greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT rutujaprashantgambhir greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT vishakhasuryakantparkhe greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT pranotianilkamble greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT cdlokhande greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties AT arpitapandeytiwari greensynthesisofsilvernanoparticlesviaaloebarbadensismillerleavesanticancerantioxidativeantimicrobialandphotocatalyticproperties |