Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network

This paper proposes a leak detection and size identification technique in fluid pipelines based on a new leak-sensitive feature called the vulnerability index (VI) and 1-D convolutional neural network (1D-CNN). The acoustic emission hit (AEH) features can differentiate between normal and leak operat...

Full description

Bibliographic Details
Main Authors: Zahoor Ahmad, Tuan-Khai Nguyen, Jong-Myon Kim
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Engineering Applications of Computational Fluid Mechanics
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/19942060.2023.2165159
Description
Summary:This paper proposes a leak detection and size identification technique in fluid pipelines based on a new leak-sensitive feature called the vulnerability index (VI) and 1-D convolutional neural network (1D-CNN). The acoustic emission hit (AEH) features can differentiate between normal and leak operating conditions of the pipeline. However, the multiple sources of acoustic emission hits, such as fluid pressure on the joints, interference noises, flange vibrations, and leaks in the pipeline, make the features less sensitive toward leak size identification in the pipeline. To address this issue, acoustic emission hit features are first extracted from the acoustic emission (AE) signal using a sliding window with an adaptive threshold. Since the distribution of the acoustic emission hit features changes according to the pipeline working conditions, a newly developed multiscale Mann–Whitney test (MMU-Test) is applied to the acoustic emission hit features to obtain the new vulnerability index feature, which shows the pipeline's susceptibility to leak and changes according to the pipeline working conditions. Finally, the vulnerability index is provided as input to a 1-D-CNN for leak detection and size identification, whose experimental results show  a higher accuracy as compared to the reference state-of-the-art methods under variable fluid pressure conditions.
ISSN:1994-2060
1997-003X