Математическая модель классификатора объектов на основе байесовского подхода
Утверждается, что первостепенное значение в решении задачи классификации занимают: нахождение условий разбиения генеральной совокупности на классы, определение качества такого расслоения и верификация модели классификатора. Рассмотрена математическая модель нерандомизированного классификатора призна...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Russian Academy of Sciences, St. Petersburg Federal Research Center
2020-12-01
|
Series: | Информатика и автоматизация |
Subjects: | |
Online Access: | http://ia.spcras.ru/index.php/sp/article/view/13886 |
Summary: | Утверждается, что первостепенное значение в решении задачи классификации занимают: нахождение условий разбиения генеральной совокупности на классы, определение качества такого расслоения и верификация модели классификатора. Рассмотрена математическая модель нерандомизированного классификатора признаков, полученных без учителя, когда априори не задается число классов, а лишь устанавливается его верхняя граница. Математическая модель приведена в виде постановки минимаксной условной экстремальной задачи и представляет собой задачу поиска матрицы принадлежности объектов к какому-либо классу. В основе разработки классификатора признаков находится синтез двумерной плотности вероятностей в пространстве координат: классы – объекты. С помощью обобщенных функций вероятностная задача поиска минимума Байесовского риска сведена к детерминированной задаче на множестве нерандомизированных классификаторов. Вместе с тем использование специально введенных ограничений фиксирует нерандомизированные правила принятия решений и погружает целочисленную задачу нелинейного программирования в общую непрерывную нелинейную задачу. Для корректного синтеза классификатора необходимы дисперсионная кривая изотропной выборки и характеристики качества классификации в зависимости от суммарной внутриклассовой и межклассовой дисперсии. Задача классификации может быть интерпретирована как частная задача теории катастроф. В условиях ограниченных исходных данных найден минимаксный функционал, отражающий качество классификации при квадратичной функции потерь. Математическая модель представлена в виде задачи целочисленного нелинейного программирования и приведена с помощью полиномиальных ограничений к виду общей задачи нелинейного непрерывного программирования. Найдены необходимые условия расслоения на классы. Эти условия могут быть использованы как достаточные при проверке гипотезы о существовании классов. |
---|---|
ISSN: | 2713-3192 2713-3206 |