High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization

Mesh denoising is crucial for improving the quality of meshes required by scanning devices. The main challenge is to maximally preserve geometric features while removing different kinds of noise. In this paper, we propose a novel normal filtering model that incorporates a high order <inline-formu...

Full description

Bibliographic Details
Main Authors: Zheng Liu, Mingqiang Guo, Zhong Xie, Jinqin Liu, Bohong Zeng
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8824104/
_version_ 1798001964511920128
author Zheng Liu
Mingqiang Guo
Zhong Xie
Jinqin Liu
Bohong Zeng
author_facet Zheng Liu
Mingqiang Guo
Zhong Xie
Jinqin Liu
Bohong Zeng
author_sort Zheng Liu
collection DOAJ
description Mesh denoising is crucial for improving the quality of meshes required by scanning devices. The main challenge is to maximally preserve geometric features while removing different kinds of noise. In this paper, we propose a novel normal filtering model that incorporates a high order <inline-formula> <tex-math notation="LaTeX">$\ell_{p}$ </tex-math></inline-formula> regularization term and an <inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> fidelity term. Then, vertex positions of the mesh can be reconstructed according to the filtered face normals. Thanking to the proposed <inline-formula> <tex-math notation="LaTeX">$\ell_{p}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> normal filtering model, our method has crucial advantage in preserving geometric features and simultaneously is robust against different kinds of noise. Numerically, we develop an efficient algorithm based on iteratively reweighted <inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> minimization and augmented Lagrangian method to solve the problem. We testify effectiveness of our mesh denoising method on synthetic meshes and a broad variety of scanning data produced by the laser scanner and Kinect sensors. We compare our method to state-of-the-art methods and demonstrate the superiority of our method in various cases.
first_indexed 2024-04-11T11:44:35Z
format Article
id doaj.art-8be56d687e044e7eb59223aa595ca47e
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-11T11:44:35Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-8be56d687e044e7eb59223aa595ca47e2022-12-22T04:25:42ZengIEEEIEEE Access2169-35362019-01-01714698914700010.1109/ACCESS.2019.29393628824104High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> MinimizationZheng Liu0https://orcid.org/0000-0001-6713-6680Mingqiang Guo1Zhong Xie2Jinqin Liu3Bohong Zeng4School of Geography and Information Engineering, China University of Geosciences, Wuhan, ChinaSchool of Geography and Information Engineering, China University of Geosciences, Wuhan, ChinaSchool of Geography and Information Engineering, China University of Geosciences, Wuhan, ChinaSchool of Geography and Information Engineering, China University of Geosciences, Wuhan, ChinaSchool of Geography and Information Engineering, China University of Geosciences, Wuhan, ChinaMesh denoising is crucial for improving the quality of meshes required by scanning devices. The main challenge is to maximally preserve geometric features while removing different kinds of noise. In this paper, we propose a novel normal filtering model that incorporates a high order <inline-formula> <tex-math notation="LaTeX">$\ell_{p}$ </tex-math></inline-formula> regularization term and an <inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> fidelity term. Then, vertex positions of the mesh can be reconstructed according to the filtered face normals. Thanking to the proposed <inline-formula> <tex-math notation="LaTeX">$\ell_{p}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> normal filtering model, our method has crucial advantage in preserving geometric features and simultaneously is robust against different kinds of noise. Numerically, we develop an efficient algorithm based on iteratively reweighted <inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> minimization and augmented Lagrangian method to solve the problem. We testify effectiveness of our mesh denoising method on synthetic meshes and a broad variety of scanning data produced by the laser scanner and Kinect sensors. We compare our method to state-of-the-art methods and demonstrate the superiority of our method in various cases.https://ieeexplore.ieee.org/document/8824104/Augmented lagrangian methoditeratively reweighted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ</italic>₁ minimizationmesh denoising3D geometry processing
spellingShingle Zheng Liu
Mingqiang Guo
Zhong Xie
Jinqin Liu
Bohong Zeng
High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
IEEE Access
Augmented lagrangian method
iteratively reweighted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ</italic>₁ minimization
mesh denoising
3D geometry processing
title High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
title_full High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
title_fullStr High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
title_full_unstemmed High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
title_short High Order Mesh Denoising via <inline-formula> <tex-math notation="LaTeX">$\ell_{P}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$\ell_{1}$ </tex-math></inline-formula> Minimization
title_sort high order mesh denoising via inline formula tex math notation latex ell p tex math inline formula inline formula tex math notation latex ell 1 tex math inline formula minimization
topic Augmented lagrangian method
iteratively reweighted <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ℓ</italic>₁ minimization
mesh denoising
3D geometry processing
url https://ieeexplore.ieee.org/document/8824104/
work_keys_str_mv AT zhengliu highordermeshdenoisingviainlineformulatexmathnotationlatexellptexmathinlineformulainlineformulatexmathnotationlatexell1texmathinlineformulaminimization
AT mingqiangguo highordermeshdenoisingviainlineformulatexmathnotationlatexellptexmathinlineformulainlineformulatexmathnotationlatexell1texmathinlineformulaminimization
AT zhongxie highordermeshdenoisingviainlineformulatexmathnotationlatexellptexmathinlineformulainlineformulatexmathnotationlatexell1texmathinlineformulaminimization
AT jinqinliu highordermeshdenoisingviainlineformulatexmathnotationlatexellptexmathinlineformulainlineformulatexmathnotationlatexell1texmathinlineformulaminimization
AT bohongzeng highordermeshdenoisingviainlineformulatexmathnotationlatexellptexmathinlineformulainlineformulatexmathnotationlatexell1texmathinlineformulaminimization