An Analytical Model for Predicting the Stress Intensity Factor of Single-Hole-Edge Crack in Diffusion Bonding Laminates with Preset Unbonded Area
The diffusion bonding titanium alloy laminates with preset unbonded area (DBTALPUA) compared with other titanium alloy structural forms has good damage tolerance performance and designability. It is important to fast get the damage estimation of the DBTALPUA with crack. The stress intensity factor (...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/11/1526 |
Summary: | The diffusion bonding titanium alloy laminates with preset unbonded area (DBTALPUA) compared with other titanium alloy structural forms has good damage tolerance performance and designability. It is important to fast get the damage estimation of the DBTALPUA with crack. The stress intensity factor (SIF) of the crack is an effective indicator to give the damage estimation. In order to get the SIF fast, this paper proposed an analytical model to calculate SIF for single hole-edge crack in DBTALPUA with hole under tension loading. Comparison of the results obtained through this analytical model and numerical simulation illustrated that the analytical model can rapidly predict the SIF with fine precision. |
---|---|
ISSN: | 2075-4701 |