High-power mid-infrared femtosecond master oscillator power amplifier Er:ZBLAN fiber laser system
High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a l...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2023-01-01
|
Series: | High Power Laser Science and Engineering |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2095471923000427/type/journal_article |
Summary: | High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier. The main amplifier is actively cooled and bidirectionally pumped at 976 nm, generating a slope efficiency of 26.9%. Pulses of 8.12 W, 148 fs at 2.8 μm with a repetition rate of 69.65 MHz are achieved. To the best of our knowledge, this is the highest average power ever achieved from a femtosecond MIR laser source. Such a compact ultrafast laser system is promising for a wide range of applications, such as medical surgery and material processing. |
---|---|
ISSN: | 2095-4719 2052-3289 |