Nuclear Klf4 accumulation is associated with cetuximab drug-resistance and predicts poor prognosis of nasopharyngeal carcinoma

Abstract Background The functions of the protein expressed in the nucleus and cytoplasm were different or opposite. The previous study found that oncogene Klf4 played a role of tumor suppressor in the nasopharyngeal cytoplasm. Cetuximab targeted epidermal growth factor receptor (EGFR) for the treatm...

Full description

Bibliographic Details
Main Authors: Xiqing Li, Zunlan Zhao, Shijiang Yi, Lei Ma, Ming Li, Mingyue Liu, Yaping Zhang, Guangzhi Liu
Format: Article
Language:English
Published: BMC 2018-07-01
Series:Journal of Translational Medicine
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12967-018-1561-0
Description
Summary:Abstract Background The functions of the protein expressed in the nucleus and cytoplasm were different or opposite. The previous study found that oncogene Klf4 played a role of tumor suppressor in the nasopharyngeal cytoplasm. Cetuximab targeted epidermal growth factor receptor (EGFR) for the treatment of nasopharyngeal carcinoma. Methods A cohort of 231 cases of advanced nasopharyngeal carcinoma (7th AJCC III–IVa) samples was assessed by immunohistochemistry (IHC), of which, 63 cases were treated with basic treatment without cetuximab, the basic treatment include chemotherapy and radiotherapy, the regent of the chemotherapy include cisplatin and fluorouracil and 168 cases were treated with cetuximab in addition to the basic treatment. The expression of the KLF4 protein was detected in nucleus and cytoplasm, c-Met protein and nuclear EGFR protein (nEGFR) by IHC, and H-Ras and PI3K mutations by an arms-PCR method in vivo. KLF4 was found to specifically express in the cytoplasm by deleting the NES, while H-Ras and PI3K genes were mutated in the nasopharyngeal carcinoma 5–8F and HONE1cell line. The cetuximab resistance in differentially mutated 5–8F and HONE1 cells was analyzed. Results The expression of Klf4 in the nucleus was associated with prognosis in 168 patients with cetuximab-treated nasopharyngeal carcinoma, which was found by retrospective analysis. The KLF4 expression in the nucleus was not significantly correlated with the prognosis in 63 nasopharyngeal carcinoma patients treated with basic treatment (P = 0.261). The expression of Klf4 in the nucleus was correlated with mutations of H-Ras and PI3K in 168 cases of nasopharyngeal carcinoma with cetuximab treatment. In vitro experiments showed that Klf4 was specifically expressed in the nucleus of 5–8F and HONE1 cells as assessed by deleting nuclear export signal, which led to cetuximab resistance. H-Ras and PI3K mutations in 5–8F and HONE1 cells also led to the expression of Klf4 in the nucleus and resistance to cetuximab. In HONE1 cells, Klf4 was specifically localized in the cytoplasm by deleting the NES, and the H-Ras and PI3K mutations did not result in an increased expression of Klf4 in the nucleus and cetuximab resistance. Conclusion The prognosis of nasopharyngeal carcinoma was not significantly improved by cetuximab treatment when the Klf4 was highly expressed in the nucleus of nasopharyngeal carcinoma tissues. The expression of Klf4 in the nucleus can be used as a biomarker for predicting the effects of cetuximab treatment in nasopharyngeal carcinoma, which might be attributed to the H-RAS and PI3K mutations, leading to cetuximab resistance.
ISSN:1479-5876