Shared Three-Dimensional Robotic Arm Control Based on Asynchronous BCI and Computer Vision

Objective: A brain-computer interface (BCI) can be used to translate neuronal activity into commands to control external devices. However, using noninvasive BCI to control a robotic arm for movements in three-dimensional (3D) environments and accomplish complicated daily tasks, such as grasping and...

Full description

Bibliographic Details
Main Authors: Yajun Zhou, Tianyou Yu, Wei Gao, Weichen Huang, Zilin Lu, Qiyun Huang, Yuanqing Li
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Transactions on Neural Systems and Rehabilitation Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10195997/
Description
Summary:Objective: A brain-computer interface (BCI) can be used to translate neuronal activity into commands to control external devices. However, using noninvasive BCI to control a robotic arm for movements in three-dimensional (3D) environments and accomplish complicated daily tasks, such as grasping and drinking, remains a challenge. Approach: In this study, a shared robotic arm control system based on hybrid asynchronous BCI and computer vision was presented. The BCI model, which combines steady-state visual evoked potentials (SSVEPs) and blink-related electrooculography (EOG) signals, allows users to freely choose from fifteen commands in an asynchronous mode corresponding to robot actions in a 3D workspace and reach targets with a wide movement range, while computer vision can identify objects and assist a robotic arm in completing more precise tasks, such as grasping a target automatically. Results: Ten subjects participated in the experiments and achieved an average accuracy of more than 92% and a high trajectory efficiency for robot movement. All subjects were able to perform the reach-grasp-drink tasks successfully using the proposed shared control method, with fewer error commands and shorter completion time than with direct BCI control. Significance: Our results demonstrated the feasibility and efficiency of generating practical multidimensional control of an intuitive robotic arm by merging hybrid asynchronous BCI and computer vision-based recognition.
ISSN:1558-0210