Robustness with respect to exponents for nonautonomous reaction–diffusion equations

In this work we consider a family of nonautonomous problems with homogeneous Neumann boundary conditions and spatially variable exponents with equation of the form \begin{equation*} \frac{\partial u_{\lambda}}{\partial_t}(t)-\operatorname{div}\left(D(t)|\nabla u_{\lambda}(t)|^{p_{\lambda}(x)-2}\na...

Full description

Bibliographic Details
Main Authors: Rodrigo Samprogna, Jacson Simsen
Format: Article
Language:English
Published: University of Szeged 2018-02-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6403
_version_ 1797830521938509824
author Rodrigo Samprogna
Jacson Simsen
author_facet Rodrigo Samprogna
Jacson Simsen
author_sort Rodrigo Samprogna
collection DOAJ
description In this work we consider a family of nonautonomous problems with homogeneous Neumann boundary conditions and spatially variable exponents with equation of the form \begin{equation*} \frac{\partial u_{\lambda}}{\partial_t}(t)-\operatorname{div}\left(D(t)|\nabla u_{\lambda}(t)|^{p_{\lambda}(x)-2}\nabla u_{\lambda}(t)\right)+|u_{\lambda}(t)|^{p_{\lambda}(x)-2}u_{\lambda}(t)=B(t,u_{\lambda}(t)). \end{equation*} We study the continuity of the flow and we study the behavior of attractors when $p_{\lambda}(\cdot)\to p(\cdot)$ in $L^{\infty}(\Omega)$ as $\lambda\to\infty$ where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$.
first_indexed 2024-04-09T13:38:30Z
format Article
id doaj.art-8c25e3750088470cb880def8bdd63895
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:30Z
publishDate 2018-02-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-8c25e3750088470cb880def8bdd638952023-05-09T07:53:08ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752018-02-0120181111510.14232/ejqtde.2018.1.116403Robustness with respect to exponents for nonautonomous reaction–diffusion equationsRodrigo Samprogna0Jacson Simsen1Universidade Federal de Itajubá, Itajubá - MG, BrazilUniversidade Federal de Itajubá, Itajubá - MG, BrazilIn this work we consider a family of nonautonomous problems with homogeneous Neumann boundary conditions and spatially variable exponents with equation of the form \begin{equation*} \frac{\partial u_{\lambda}}{\partial_t}(t)-\operatorname{div}\left(D(t)|\nabla u_{\lambda}(t)|^{p_{\lambda}(x)-2}\nabla u_{\lambda}(t)\right)+|u_{\lambda}(t)|^{p_{\lambda}(x)-2}u_{\lambda}(t)=B(t,u_{\lambda}(t)). \end{equation*} We study the continuity of the flow and we study the behavior of attractors when $p_{\lambda}(\cdot)\to p(\cdot)$ in $L^{\infty}(\Omega)$ as $\lambda\to\infty$ where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6403$p(x)$-laplacianvariable exponentspullback attractor and nonautonomous asymptotic behavior
spellingShingle Rodrigo Samprogna
Jacson Simsen
Robustness with respect to exponents for nonautonomous reaction–diffusion equations
Electronic Journal of Qualitative Theory of Differential Equations
$p(x)$-laplacian
variable exponents
pullback attractor and nonautonomous asymptotic behavior
title Robustness with respect to exponents for nonautonomous reaction–diffusion equations
title_full Robustness with respect to exponents for nonautonomous reaction–diffusion equations
title_fullStr Robustness with respect to exponents for nonautonomous reaction–diffusion equations
title_full_unstemmed Robustness with respect to exponents for nonautonomous reaction–diffusion equations
title_short Robustness with respect to exponents for nonautonomous reaction–diffusion equations
title_sort robustness with respect to exponents for nonautonomous reaction diffusion equations
topic $p(x)$-laplacian
variable exponents
pullback attractor and nonautonomous asymptotic behavior
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6403
work_keys_str_mv AT rodrigosamprogna robustnesswithrespecttoexponentsfornonautonomousreactiondiffusionequations
AT jacsonsimsen robustnesswithrespecttoexponentsfornonautonomousreactiondiffusionequations