Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs...

Full description

Bibliographic Details
Main Authors: Daryus Chandra, Zunaira Babar, Hung Viet Nguyen, Dimitrios Alanis, Panagiotis Botsinis, Soon Xin Ng, Lajos Hanzo
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8218756/
_version_ 1811212417071316992
author Daryus Chandra
Zunaira Babar
Hung Viet Nguyen
Dimitrios Alanis
Panagiotis Botsinis
Soon Xin Ng
Lajos Hanzo
author_facet Daryus Chandra
Zunaira Babar
Hung Viet Nguyen
Dimitrios Alanis
Panagiotis Botsinis
Soon Xin Ng
Lajos Hanzo
author_sort Daryus Chandra
collection DOAJ
description We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by <inline-formula> <tex-math notation="LaTeX">$1.8 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$1.3 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$6.3 \times 10^{-2}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$6.8 \times 10^{-2}$ </tex-math></inline-formula>, respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
first_indexed 2024-04-12T05:29:03Z
format Article
id doaj.art-8c2bc20db6d54f9caf975439c94e4d99
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T05:29:03Z
publishDate 2018-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-8c2bc20db6d54f9caf975439c94e4d992022-12-22T03:46:10ZengIEEEIEEE Access2169-35362018-01-016137291375710.1109/ACCESS.2017.27844178218756Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism PerspectiveDaryus Chandra0https://orcid.org/0000-0003-2406-7229Zunaira Babar1Hung Viet Nguyen2https://orcid.org/0000-0001-6349-1044Dimitrios Alanis3https://orcid.org/0000-0002-6654-1702Panagiotis Botsinis4Soon Xin Ng5Lajos Hanzo6https://orcid.org/0000-0002-2636-5214School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.School of Electronics and Computer Science, University of Southampton, Southampton, U.K.We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by <inline-formula> <tex-math notation="LaTeX">$1.8 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$1.3 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$6.3 \times 10^{-2}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$6.8 \times 10^{-2}$ </tex-math></inline-formula>, respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.https://ieeexplore.ieee.org/document/8218756/Quantum error correction codesquantum stabilizer codesquantum topological codeslattice codeLDPC
spellingShingle Daryus Chandra
Zunaira Babar
Hung Viet Nguyen
Dimitrios Alanis
Panagiotis Botsinis
Soon Xin Ng
Lajos Hanzo
Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
IEEE Access
Quantum error correction codes
quantum stabilizer codes
quantum topological codes
lattice code
LDPC
title Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
title_full Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
title_fullStr Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
title_full_unstemmed Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
title_short Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
title_sort quantum topological error correction codes the classical to quantum isomorphism perspective
topic Quantum error correction codes
quantum stabilizer codes
quantum topological codes
lattice code
LDPC
url https://ieeexplore.ieee.org/document/8218756/
work_keys_str_mv AT daryuschandra quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT zunairababar quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT hungvietnguyen quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT dimitriosalanis quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT panagiotisbotsinis quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT soonxinng quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective
AT lajoshanzo quantumtopologicalerrorcorrectioncodestheclassicaltoquantumisomorphismperspective