Summary: | In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is called a Jordan
(α,β)\left(\alpha ,\beta )-higher
∗\ast -derivation (resp. a Jordan triple
(α,β)\left(\alpha ,\beta )-higher
∗\ast -derivation) of RR if dn(a2)=∑i+j=ndi(βj(a))dj(αi(a∗i)){d}_{n}\left({a}^{2})={\sum }_{i+j=n}{d}_{i}\left({\beta }^{j}\left(a)){d}_{j}\left({\alpha }^{i}\left({a}^{{\ast }^{i}})) (resp. dn(aba)=∑i+j+k=ndi(βj+k(a))dj(βk(αi(b∗i)))dk(αi+j(a∗i+j)){d}_{n}\left(aba)={\sum }_{i+j+k=n}{d}_{i}\left({\beta }^{j+k}\left(a)){d}_{j}\left({\beta }^{k}\left({\alpha }^{i}\left({b}^{{\ast }^{i}}))){d}_{k}\left({\alpha }^{i+j}\left({a}^{{\ast }^{i+j}}))) for all a,b∈Ra,b\in R and each n∈N0n\in {{\mathbb{N}}}_{0}. We show that the two notions of Jordan (α,β)\left(\alpha ,\beta )-higher ∗\ast -derivation and Jordan triple (α,β)\left(\alpha ,\beta )-higher ∗\ast -derivation on a 6-torsion free semiprime ∗\ast -ring are equivalent.
|