Deep Learning-Based Community Detection Approach on Bitcoin Network
Community detection is essential in P2P network analysis as it helps identify connectivity structure, undesired centralization, and influential nodes. Existing methods primarily utilize topological data and neglect the rich content data. This paper proposes a technique combining topological and cont...
主要な著者: | Meryam Essaid, Hongteak Ju |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2022-11-01
|
シリーズ: | Systems |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2079-8954/10/6/203 |
類似資料
-
Community Detection in Social Networks Using Deep Learning Approach
著者:: Monireh Hosseini, 等
出版事項: (2023-06-01) -
Predicting Financial Risk Associated to Bitcoin Investment by Deep Learning
著者:: Nahla Aljojo
出版事項: (2022-06-01) -
Illegal Community Detection in Bitcoin Transaction Networks
著者:: Dany Kamuhanda, 等
出版事項: (2023-07-01) -
A new deep sparse autoencoder for community detection in complex networks
著者:: Rong Fei, 等
出版事項: (2020-05-01) -
Deep Learning Methods for Modeling Bitcoin Price
著者:: Prosper Lamothe-Fernández, 等
出版事項: (2020-07-01)