Summary: | Considering green scheduling and sustainable manufacturing, the energy-efficient hybrid flow shop scheduling problem (EHFSP) with a variable speed constraint is investigated, and a novel multi-population artificial bee colony algorithm (MPABC) is developed to minimize makespan, total tardiness and total energy consumption (TEC), simultaneously. It is necessary for manufacturers to fully understand the notion of symmetry in balancing economic and environmental indicators. To improve the search efficiency, the population was randomly categorized into a number of subpopulations, then several groups were constructed based on the quality of subpopulations. A different search strategy was executed in each group to maintain the population diversity. The historical optimization data were also used to enhance the quality of solutions. Finally, extensive experiments were conducted. The results demonstrate that MPABC can achieve an outstanding performance on three metrics <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>D</mi><mi>I</mi></mrow><mi>R</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>c</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mi>d</mi></mrow></semantics></math></inline-formula> for the considered EHFSP.
|