Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer

Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walker’s evolution gives a high degree of flexibility for studying various applications. Here, we present time-multiple...

Full description

Bibliographic Details
Main Authors: Thomas Nitsche, Fabian Elster, Jaroslav Novotný, Aurél Gábris, Igor Jex, Sonja Barkhofen, Christine Silberhorn
Format: Article
Language:English
Published: IOP Publishing 2016-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/18/6/063017
Description
Summary:Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walker’s evolution gives a high degree of flexibility for studying various applications. Here, we present time-multiplexed finite quantum walks of variable size, the preparation of non-localised input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.
ISSN:1367-2630