Tsallis Mutual Information for Document Classification

Mutual information is one of the mostly used measures for evaluating image similarity. In this paper, we investigate the application of three different Tsallis-based generalizations of mutual information to analyze the similarity between scanned documents. These three generalizations derive from the...

Full description

Bibliographic Details
Main Authors: Màrius Vila, Mateu Sbert, Anton Bardera, Miquel Feixas
Format: Article
Language:English
Published: MDPI AG 2011-09-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/13/9/1694/
_version_ 1811262806690889728
author Màrius Vila
Mateu Sbert
Anton Bardera
Miquel Feixas
author_facet Màrius Vila
Mateu Sbert
Anton Bardera
Miquel Feixas
author_sort Màrius Vila
collection DOAJ
description Mutual information is one of the mostly used measures for evaluating image similarity. In this paper, we investigate the application of three different Tsallis-based generalizations of mutual information to analyze the similarity between scanned documents. These three generalizations derive from the Kullback–Leibler distance, the difference between entropy and conditional entropy, and the Jensen–Tsallis divergence, respectively. In addition, the ratio between these measures and the Tsallis joint entropy is analyzed. The performance of all these measures is studied for different entropic indexes in the context of document classification and registration.
first_indexed 2024-04-12T19:33:15Z
format Article
id doaj.art-8c3bb841be674b3ab920c88834137fa4
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-12T19:33:15Z
publishDate 2011-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-8c3bb841be674b3ab920c88834137fa42022-12-22T03:19:17ZengMDPI AGEntropy1099-43002011-09-011391694170710.3390/e13091694Tsallis Mutual Information for Document ClassificationMàrius VilaMateu SbertAnton BarderaMiquel FeixasMutual information is one of the mostly used measures for evaluating image similarity. In this paper, we investigate the application of three different Tsallis-based generalizations of mutual information to analyze the similarity between scanned documents. These three generalizations derive from the Kullback–Leibler distance, the difference between entropy and conditional entropy, and the Jensen–Tsallis divergence, respectively. In addition, the ratio between these measures and the Tsallis joint entropy is analyzed. The performance of all these measures is studied for different entropic indexes in the context of document classification and registration.http://www.mdpi.com/1099-4300/13/9/1694/Tsallis entropymutual informationimage similaritydocument classification
spellingShingle Màrius Vila
Mateu Sbert
Anton Bardera
Miquel Feixas
Tsallis Mutual Information for Document Classification
Entropy
Tsallis entropy
mutual information
image similarity
document classification
title Tsallis Mutual Information for Document Classification
title_full Tsallis Mutual Information for Document Classification
title_fullStr Tsallis Mutual Information for Document Classification
title_full_unstemmed Tsallis Mutual Information for Document Classification
title_short Tsallis Mutual Information for Document Classification
title_sort tsallis mutual information for document classification
topic Tsallis entropy
mutual information
image similarity
document classification
url http://www.mdpi.com/1099-4300/13/9/1694/
work_keys_str_mv AT mariusvila tsallismutualinformationfordocumentclassification
AT mateusbert tsallismutualinformationfordocumentclassification
AT antonbardera tsallismutualinformationfordocumentclassification
AT miquelfeixas tsallismutualinformationfordocumentclassification