Application of Hjorth parameters in the classification of healthy aging EEG signals
Aging has extensive impacts on brain cognition. In this work we proposed a method using Hjorth parameters to classify the elderly’s electroencephalography (EEG) signals from that of middle age group by applying K-nearest neighbor (KNN) and Random forest (RF) classifiers. We acquired EEG of 20 heal...
Main Authors: | Hamad Javaid, Krit Charupanit, Ekkasit Kumarnsit, Surapong Chatpun |
---|---|
Format: | Article |
Language: | English |
Published: |
Prince of Songkla University
2021-12-01
|
Series: | Songklanakarin Journal of Science and Technology (SJST) |
Subjects: | |
Online Access: | https://rdo.psu.ac.th/sjst/journal/43-6/37.pdf |
Similar Items
-
Age-Related Alterations in EEG Network Connectivity in Healthy Aging
by: Hamad Javaid, et al.
Published: (2022-02-01) -
Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis
by: Alawee Wissam H., et al.
Published: (2023-12-01) -
Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters
by: Ala Hag, et al.
Published: (2023-09-01) -
Human behavior in free search online shopping scenarios can be predicted from EEG activation using Hjorth parameters
by: Ninja Katja Horr, et al.
Published: (2023-11-01) -
Klasifikasi Sinyal EKG menggunakan Ciri Statistik dan Parameter Hjorth dengan SVM dan k-NN
by: INUNG WIJAYANTO, et al.
Published: (2022-01-01)