A maximum-principle approach to the minimisation of a nonlocal dislocation energy

In this paper we use an approach based on the maximum principle to characterise the minimiser of a family of nonlocal and anisotropic energies <em>I</em><sub><em>α</em></sub> defined on probability measures in $\mathbb{R}^2$. The purely nonlocal term in <em>...

Full description

Bibliographic Details
Main Authors: Joan Mateu, Maria Giovanna Mora, Luca Rondi, Lucia Scardia, Joan Verdera
Format: Article
Language:English
Published: AIMS Press 2020-05-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/mine.2020012/fulltext.html
_version_ 1818179629839548416
author Joan Mateu
Maria Giovanna Mora
Luca Rondi
Lucia Scardia
Joan Verdera
author_facet Joan Mateu
Maria Giovanna Mora
Luca Rondi
Lucia Scardia
Joan Verdera
author_sort Joan Mateu
collection DOAJ
description In this paper we use an approach based on the maximum principle to characterise the minimiser of a family of nonlocal and anisotropic energies <em>I</em><sub><em>α</em></sub> defined on probability measures in $\mathbb{R}^2$. The purely nonlocal term in <em>I</em><sub><em>α</em></sub> is of convolution type, and is isotropic for <em>α</em> = 0 and anisotropic otherwise. The cases <em>α</em> = 0 and <em>α</em> = 1 are special: The first corresponds to Coulombic interactions, and the latter to dislocations. The minimisers of <em>I</em><sub><em>α</em></sub> have been characterised by the same authors in an earlier paper, by exploiting some formal similarities with the Euler equation, and by means of complex-analysis techniques. We here propose a different approach, that we believe can be applied to more general energies.
first_indexed 2024-12-11T21:06:55Z
format Article
id doaj.art-8c4ac17adfc6493bbdd726feab8c1b58
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-12-11T21:06:55Z
publishDate 2020-05-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-8c4ac17adfc6493bbdd726feab8c1b582022-12-22T00:50:50ZengAIMS PressMathematics in Engineering2640-35012020-05-012225326310.3934/mine.2020012A maximum-principle approach to the minimisation of a nonlocal dislocation energyJoan Mateu0Maria Giovanna Mora1Luca Rondi2Lucia Scardia3Joan Verdera41 Department de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia2 Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy3 Dipartimento di Matematica, Università di Milano, via Saldini, 50, 20133 Milano, Italy4 Department of Mathematics, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom1 Department de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, CataloniaIn this paper we use an approach based on the maximum principle to characterise the minimiser of a family of nonlocal and anisotropic energies <em>I</em><sub><em>α</em></sub> defined on probability measures in $\mathbb{R}^2$. The purely nonlocal term in <em>I</em><sub><em>α</em></sub> is of convolution type, and is isotropic for <em>α</em> = 0 and anisotropic otherwise. The cases <em>α</em> = 0 and <em>α</em> = 1 are special: The first corresponds to Coulombic interactions, and the latter to dislocations. The minimisers of <em>I</em><sub><em>α</em></sub> have been characterised by the same authors in an earlier paper, by exploiting some formal similarities with the Euler equation, and by means of complex-analysis techniques. We here propose a different approach, that we believe can be applied to more general energies.https://www.aimspress.com/article/10.3934/mine.2020012/fulltext.htmlnonlocal interactionpotential theorymaximum principledislocationskirchhoff ellipses
spellingShingle Joan Mateu
Maria Giovanna Mora
Luca Rondi
Lucia Scardia
Joan Verdera
A maximum-principle approach to the minimisation of a nonlocal dislocation energy
Mathematics in Engineering
nonlocal interaction
potential theory
maximum principle
dislocations
kirchhoff ellipses
title A maximum-principle approach to the minimisation of a nonlocal dislocation energy
title_full A maximum-principle approach to the minimisation of a nonlocal dislocation energy
title_fullStr A maximum-principle approach to the minimisation of a nonlocal dislocation energy
title_full_unstemmed A maximum-principle approach to the minimisation of a nonlocal dislocation energy
title_short A maximum-principle approach to the minimisation of a nonlocal dislocation energy
title_sort maximum principle approach to the minimisation of a nonlocal dislocation energy
topic nonlocal interaction
potential theory
maximum principle
dislocations
kirchhoff ellipses
url https://www.aimspress.com/article/10.3934/mine.2020012/fulltext.html
work_keys_str_mv AT joanmateu amaximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT mariagiovannamora amaximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT lucarondi amaximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT luciascardia amaximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT joanverdera amaximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT joanmateu maximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT mariagiovannamora maximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT lucarondi maximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT luciascardia maximumprincipleapproachtotheminimisationofanonlocaldislocationenergy
AT joanverdera maximumprincipleapproachtotheminimisationofanonlocaldislocationenergy