Denoising Marine Controlled Source Electromagnetic Data Based on Dictionary Learning

Marine controlled source electromagnetic (CSEM) is an efficient method to explore ocean resources. The amplitudes of marine CSEM signals decay rapidly with the measuring offsets. The signal is easily contaminated by various kinds of noise when the offset is large. These noise include instrument inte...

Full description

Bibliographic Details
Main Authors: Pengfei Zhang, Xinpeng Pan, Jiawei Liu
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/6/682
Description
Summary:Marine controlled source electromagnetic (CSEM) is an efficient method to explore ocean resources. The amplitudes of marine CSEM signals decay rapidly with the measuring offsets. The signal is easily contaminated by various kinds of noise when the offset is large. These noise include instrument internal noise, dipole vibration noise, seawater motion noise and environmental noise Suppressing noise is the key to improve data quality and interpretation accuracy. Sparse representation based denoising method has been used for denoising for a long time. provides a new way to remove noise. Under the framework of sparse representation, the denoising effect is closely related to the chosen transform matrix. This matrix is called dictionary and its column named atom. In general, the stronger the correlation between signal and dictionary is, the sparser representation will be, and further the better the denoising effect will be. In this article, a new method based on dictionary learning is proposed for marine CSEM denoising. Firstly, the signal segments suffering little from noise are captured to compose the training set. Then the learned dictionary is trained from the training set via K-singular value decomposition (K-SVD) algorithm. Finally, the learned dictionary is used to sparsely represent the contaminated signal and reconstruct the filtered one. The effectiveness of the proposed approach is verified by a synthetic data denoising experiment, in which windowed-Fourier-transform (WFT) and wavelet-transform (WT) denoising methods and three dictionaries (discrete-sine-transform (DST) dictionary, DST-wavelet merged dictionary and the learned dictionary) under a sparse representation framework are tested. The results demonstrate the superiority of the proposed dictionary-learning-based denoising method. Finally, the proposed approach is applied to field data denoising process, coupled with DST and DST-wavelet dictionaries based denoising methods. The outcomes further proves that the propsoed approach is effective and superior for marine CSEM data denoising.
ISSN:2075-163X