Organic Salts and Merrifield Resin Supported [PM<sub>12</sub>O<sub>40</sub>]<sup>3−</sup> (M = Mo or W) as Catalysts for Adipic Acid Synthesis
Adipic acid (AA) was obtained by catalyzed oxidation of cyclohexene, epoxycyclohexane, or cyclohexanediol under organic solvent-free conditions using aqueous hydrogen peroxide (30%) as an oxidizing agent and molybdenum- or tungsten-based Keggin polyoxometalates (POMs) surrounded by organic cations o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/24/4/783 |
Summary: | Adipic acid (AA) was obtained by catalyzed oxidation of cyclohexene, epoxycyclohexane, or cyclohexanediol under organic solvent-free conditions using aqueous hydrogen peroxide (30%) as an oxidizing agent and molybdenum- or tungsten-based Keggin polyoxometalates (POMs) surrounded by organic cations or ionically supported on functionalized Merrifield resins. Operating under these environmentally friendly, greener conditions and with low catalyst loading (0.025% for the molecular salts and 0.001⁻0.007% for the supported POMs), AA could be produced in interesting yields. |
---|---|
ISSN: | 1420-3049 |