Silica/Proteoliposomal Nanocomposite as a Potential Platform for Ion Channel Studies

The nanostructuration of solid matrices with lipid nanoparticles containing membrane proteins is a promising tool for the development of high-throughput screening devices. Here, sol-gel silica-derived nanocomposites loaded with liposome-reconstituted KcsA, a prokaryotic potassium channel, have been...

Full description

Bibliographic Details
Main Authors: Rocío Esquembre, María Lourdes Renart, José Antonio Poveda, C. Reyes Mateo
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/19/6658
Description
Summary:The nanostructuration of solid matrices with lipid nanoparticles containing membrane proteins is a promising tool for the development of high-throughput screening devices. Here, sol-gel silica-derived nanocomposites loaded with liposome-reconstituted KcsA, a prokaryotic potassium channel, have been synthesized. The conformational and functional stability of these lipid nanoparticles before and after sol-gel immobilization have been characterized by using dynamic light scattering, and steady-state and time-resolved fluorescence spectroscopy methods. The lipid-reconstituted KcsA channel entrapped in the sol-gel matrix retained the conformational and stability changes induced by the presence of blocking or permeant cations in the buffer (associated with the conformation of the selectivity filter) or by a drop in the pH (associated with the opening of the activation gate of the protein). Hence, these results indicate that this novel device has the potential to be used as a screening platform to test new modulating drugs of potassium channels.
ISSN:1420-3049