Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energ...

Full description

Bibliographic Details
Main Authors: Henning Höfig, Michele Cerminara, Ilona Ritter, Antonie Schöne, Martina Pohl, Victoria Steffen, Julia Walter, Ignacio Vergara Dal Pont, Alexandros Katranidis, Jörg Fitter
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/23/12/3105
_version_ 1828842713974308864
author Henning Höfig
Michele Cerminara
Ilona Ritter
Antonie Schöne
Martina Pohl
Victoria Steffen
Julia Walter
Ignacio Vergara Dal Pont
Alexandros Katranidis
Jörg Fitter
author_facet Henning Höfig
Michele Cerminara
Ilona Ritter
Antonie Schöne
Martina Pohl
Victoria Steffen
Julia Walter
Ignacio Vergara Dal Pont
Alexandros Katranidis
Jörg Fitter
author_sort Henning Höfig
collection DOAJ
description Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.
first_indexed 2024-12-12T20:30:12Z
format Article
id doaj.art-8c5fba5378884af789a6d7139d327d87
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-12-12T20:30:12Z
publishDate 2018-11-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-8c5fba5378884af789a6d7139d327d872022-12-22T00:13:03ZengMDPI AGMolecules1420-30492018-11-012312310510.3390/molecules23123105molecules23123105Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled SpeciesHenning Höfig0Michele Cerminara1Ilona Ritter2Antonie Schöne3Martina Pohl4Victoria Steffen5Julia Walter6Ignacio Vergara Dal Pont7Alexandros Katranidis8Jörg Fitter9Forschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, IBG-1, 52425 Jülich, GermanyForschungszentrum Jülich, IBG-1, 52425 Jülich, GermanyRWTH Aachen University, I. Physikalisches Institut (IA), 52056 Aachen, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyForschungszentrum Jülich, ICS-5, 52425 Jülich, GermanyBacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.https://www.mdpi.com/1420-3049/23/12/3105Förster resonance energy transfer (FRET)single molecule studiesbiosensorfluorescent protein (FP)conformational changehinge motionligand bindingglucose sensor
spellingShingle Henning Höfig
Michele Cerminara
Ilona Ritter
Antonie Schöne
Martina Pohl
Victoria Steffen
Julia Walter
Ignacio Vergara Dal Pont
Alexandros Katranidis
Jörg Fitter
Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
Molecules
Förster resonance energy transfer (FRET)
single molecule studies
biosensor
fluorescent protein (FP)
conformational change
hinge motion
ligand binding
glucose sensor
title Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
title_full Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
title_fullStr Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
title_full_unstemmed Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
title_short Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
title_sort single molecule studies on a fret biosensor lessons from a comparison of fluorescent protein equipped versus dye labeled species
topic Förster resonance energy transfer (FRET)
single molecule studies
biosensor
fluorescent protein (FP)
conformational change
hinge motion
ligand binding
glucose sensor
url https://www.mdpi.com/1420-3049/23/12/3105
work_keys_str_mv AT henninghofig singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT michelecerminara singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT ilonaritter singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT antonieschone singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT martinapohl singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT victoriasteffen singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT juliawalter singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT ignaciovergaradalpont singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT alexandroskatranidis singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies
AT jorgfitter singlemoleculestudiesonafretbiosensorlessonsfromacomparisonoffluorescentproteinequippedversusdyelabeledspecies