Activated Carbon Derived from Pyrolyzed Pinewood Char using Elevated Temperature, KOH, H3PO4, and H2O2
Activated carbon was prepared from pyrolyzed pinewood char using KOH, H3PO4, H2O2, and heat-only treatments. Activated carbon prepared by the heat-only treatment had a total surface area of 233.2 m2/g, a total pore volume of 0.138 cm3/g, a microporous surface area of 129.9 m2/g, and a microporous vo...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2016-10-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_10433_Luo_Activated_Carbon_Pyrolyzed_Pinewood |
Summary: | Activated carbon was prepared from pyrolyzed pinewood char using KOH, H3PO4, H2O2, and heat-only treatments. Activated carbon prepared by the heat-only treatment had a total surface area of 233.2 m2/g, a total pore volume of 0.138 cm3/g, a microporous surface area of 129.9 m2/g, and a microporous volume of 0.07 cm3/g. The most significant improvement of pore properties for the chemically treated pinewood char was obtained by the KOH treatment, which produced a total surface area of 1124.4 m2/g, a total pore volume of 0.723 cm3/g, a microporous surface area of 923.6 m2/g, and a microporous volume of 0.485 cm3/g. After the H3PO4 treatment, pinewood char had a total surface area of 455.5 m2/g, a total pore volume of 0.251 cm3/g, a microporous surface area of 393.3 m2/g, and a microporous volume of 0.211 cm3/g. The least significant improvement was obtained from the H2O2 treatment, which produced a total surface area of 363.0 m2/g, a total pore volume of 0.202 cm3/g, a microporous surface area of 271.5 m2/g, and a microporous volume of 0.141 cm3/g. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) were performed to compare separate treatment stabilities and functional group properties. |
---|---|
ISSN: | 1930-2126 1930-2126 |