On the Multilinear Fractional Transforms

In this paper we first introduce multilinear fractional wavelet transform on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi&g...

Full description

Bibliographic Details
Main Author: Öznur Kulak
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/5/740
_version_ 1797536724753055744
author Öznur Kulak
author_facet Öznur Kulak
author_sort Öznur Kulak
collection DOAJ
description In this paper we first introduce multilinear fractional wavelet transform on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msubsup><mi mathvariant="double-struck">R</mi><mrow><mo>+</mo></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> using Schwartz functions, i.e., infinitely differentiable complex-valued functions, rapidly decreasing at infinity. We also give multilinear fractional Fourier transform and prove the Hausdorff–Young inequality and Paley-type inequality. We then study boundedness of the multilinear fractional wavelet transform on Lebesgue spaces and Lorentz spaces.
first_indexed 2024-03-10T12:04:52Z
format Article
id doaj.art-8c71f34d387b4a5da4a242849289edd0
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T12:04:52Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-8c71f34d387b4a5da4a242849289edd02023-11-21T16:41:20ZengMDPI AGSymmetry2073-89942021-04-0113574010.3390/sym13050740On the Multilinear Fractional TransformsÖznur Kulak0Department of Mathematics, Faculty of Arts and Sciences, Amasya University, Amasya 05100, TurkeyIn this paper we first introduce multilinear fractional wavelet transform on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><msubsup><mi mathvariant="double-struck">R</mi><mrow><mo>+</mo></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> using Schwartz functions, i.e., infinitely differentiable complex-valued functions, rapidly decreasing at infinity. We also give multilinear fractional Fourier transform and prove the Hausdorff–Young inequality and Paley-type inequality. We then study boundedness of the multilinear fractional wavelet transform on Lebesgue spaces and Lorentz spaces.https://www.mdpi.com/2073-8994/13/5/740multilinear fractional wavelet transformmultilinear fractional Fourier transformSchwartz functionsLebesgue spacesLorentz spaces
spellingShingle Öznur Kulak
On the Multilinear Fractional Transforms
Symmetry
multilinear fractional wavelet transform
multilinear fractional Fourier transform
Schwartz functions
Lebesgue spaces
Lorentz spaces
title On the Multilinear Fractional Transforms
title_full On the Multilinear Fractional Transforms
title_fullStr On the Multilinear Fractional Transforms
title_full_unstemmed On the Multilinear Fractional Transforms
title_short On the Multilinear Fractional Transforms
title_sort on the multilinear fractional transforms
topic multilinear fractional wavelet transform
multilinear fractional Fourier transform
Schwartz functions
Lebesgue spaces
Lorentz spaces
url https://www.mdpi.com/2073-8994/13/5/740
work_keys_str_mv AT oznurkulak onthemultilinearfractionaltransforms