On parameter bias in earthquake sequence models using data assimilation

<p>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and...

Full description

Bibliographic Details
Main Authors: A. Banerjee, Y. van Dinther, F. C. Vossepoel
Format: Article
Language:English
Published: Copernicus Publications 2023-04-01
Series:Nonlinear Processes in Geophysics
Online Access:https://npg.copernicus.org/articles/30/101/2023/npg-30-101-2023.pdf
Description
Summary:<p>The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge–Knopoff spring–block model with rate-and-state friction. Minor changes in the friction parameter <span class="inline-formula"><i>ϵ</i></span> can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in <span class="inline-formula"><i>ϵ</i></span> depends on the magnitude of the bias. A small parameter bias in <span class="inline-formula"><i>ϵ</i></span> (<span class="inline-formula">+3</span> %) can be compensated for very well using state estimation (<span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.99), whereas an intermediate bias (<span class="inline-formula">−</span>14 %) can only be partly compensated for using state estimation (<span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.47). When increasing particle spread by accounting for model error and an additional resampling step, <span class="inline-formula"><i>R</i><sup>2</sup></span> increases to 0.61. However, when there is a large bias (<span class="inline-formula">−</span>43 %) in <span class="inline-formula"><i>ϵ</i></span>, only state-parameter estimation can fully account for the parameter bias (<span class="inline-formula"><i>R</i><sup>2</sup></span> <span class="inline-formula">=</span> 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.</p>
ISSN:1023-5809
1607-7946