A multiscale approach for detection and mapping differential subsidence using multi-platform InSAR products

<p>Detecting and mapping subsidence is currently supported by interferometric synthetic aperture radar (InSAR) products. However, several factors, such as band-dependent processing, noise presence, and strong subsidence limit the use of InSAR for assessing differential subsidence, which can le...

Full description

Bibliographic Details
Main Authors: D. E. Solano-Rojas, S. Wdowinski, E. Cabral-Cano, B. Osmanoglu, E. Havazli, J. Pacheco-Martínez
Format: Article
Language:English
Published: Copernicus Publications 2020-04-01
Series:Proceedings of the International Association of Hydrological Sciences
Online Access:https://www.proc-iahs.net/382/173/2020/piahs-382-173-2020.pdf
Description
Summary:<p>Detecting and mapping subsidence is currently supported by interferometric synthetic aperture radar (InSAR) products. However, several factors, such as band-dependent processing, noise presence, and strong subsidence limit the use of InSAR for assessing differential subsidence, which can lead to ground instability and damage to infrastructure. In this work, we propose an approach for measuring and mapping differential subsidence using InSAR products. We consider synthetic aperture radar (SAR) data availability, data coverage over time and space, and the region's subsidence rates to evaluate the need of post-processing, and only then we interpret the results. We illustrate our approach with two case-examples in Central Mexico, where we process SAR data from the Japanese ALOS (L-band), the German TerraSAR-X (X-band), the Italian COSMO-SkyMed (X-band) and the European Sentinel-1 (C-band) satellites. We find good agreement between our results on differential subsidence and field data of existing faulting and find potential to map yet-to-develop faults.</p>
ISSN:2199-8981
2199-899X