Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates

Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by...

Full description

Bibliographic Details
Main Authors: Shiqing Tang, Chong Yang, Dongxiao Li, Xiaoqiang Shao
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/10/1371
Description
Summary:Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize the three-qubit refined Deutsch–Jozsa algorithm and three-qubit Grover search. The logical states of the three-qubit gate are encoded to the same ground states to avoid an adverse effect of the atomic spontaneous emission. Furthermore, there is no requirement for individual addressing of atoms in our protocol.
ISSN:1099-4300