Minimal sets and chaos in planar piecewise smooth vector fields

Some aspects concerning chaos and minimal sets in discontinuous dynamical systems are addressed. The orientability dependence of trajectories sliding trough some variety is exploited and new phenomena emerging from this situation are highlighted. In particular, although chaotic flows and nontrivial...

Full description

Bibliographic Details
Main Authors: Tiago Carvalho, Rodrigo Euzébio
Format: Article
Language:English
Published: University of Szeged 2020-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7661
Description
Summary:Some aspects concerning chaos and minimal sets in discontinuous dynamical systems are addressed. The orientability dependence of trajectories sliding trough some variety is exploited and new phenomena emerging from this situation are highlighted. In particular, although chaotic flows and nontrivial minimal sets are not allowed for smooth vector fields in the plane, the existence of such objects for some classes of vector fields is verified. A characterization of chaotic flows in terms of orientable minimal sets is also provided. The main feature of the dynamical systems under study is related to the non uniqueness of trajectories in some zero measure region as well as the orientation of orbits reaching such region.
ISSN:1417-3875