CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths

The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polari...

Full description

Bibliographic Details
Main Authors: Yunyang Li, John W. Appel, Charles L. Bennett, Ricardo Bustos, David T. Chuss, Joseph Cleary, Jullianna Denes Couto, Sumit Dahal, Rahul Datta, Rolando Dünner, Joseph R. Eimer, Thomas Essinger-Hileman, Kathleen Harrington, Jeffrey Iuliano, Tobias A. Marriage, Matthew A. Petroff, Rodrigo A. Reeves, Karwan Rostem, Rui Shi, Deniz A. N. Valle, Duncan J. Watts, Oliver F. Wolff, Edward J. Wollack, Zhilei Xu, CLASS Collaboration
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ad0233
_version_ 1797539484902883328
author Yunyang Li
John W. Appel
Charles L. Bennett
Ricardo Bustos
David T. Chuss
Joseph Cleary
Jullianna Denes Couto
Sumit Dahal
Rahul Datta
Rolando Dünner
Joseph R. Eimer
Thomas Essinger-Hileman
Kathleen Harrington
Jeffrey Iuliano
Tobias A. Marriage
Matthew A. Petroff
Rodrigo A. Reeves
Karwan Rostem
Rui Shi
Deniz A. N. Valle
Duncan J. Watts
Oliver F. Wolff
Edward J. Wollack
Zhilei Xu
CLASS Collaboration
author_facet Yunyang Li
John W. Appel
Charles L. Bennett
Ricardo Bustos
David T. Chuss
Joseph Cleary
Jullianna Denes Couto
Sumit Dahal
Rahul Datta
Rolando Dünner
Joseph R. Eimer
Thomas Essinger-Hileman
Kathleen Harrington
Jeffrey Iuliano
Tobias A. Marriage
Matthew A. Petroff
Rodrigo A. Reeves
Karwan Rostem
Rui Shi
Deniz A. N. Valle
Duncan J. Watts
Oliver F. Wolff
Edward J. Wollack
Zhilei Xu
CLASS Collaboration
author_sort Yunyang Li
collection DOAJ
description The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.
first_indexed 2024-03-10T12:45:40Z
format Article
id doaj.art-8c96a28aa0a344bf897674e4df59c0f4
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-10T12:45:40Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-8c96a28aa0a344bf897674e4df59c0f42023-11-21T13:29:06ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01958215410.3847/1538-4357/ad0233CLASS Observations of Atmospheric Cloud Polarization at millimeter WavelengthsYunyang Li0https://orcid.org/0000-0002-4820-1122John W. Appel1https://orcid.org/0000-0002-8412-630XCharles L. Bennett2https://orcid.org/0000-0001-8839-7206Ricardo Bustos3https://orcid.org/0000-0001-8468-9391David T. Chuss4https://orcid.org/0000-0003-0016-0533Joseph Cleary5https://orcid.org/0000-0002-7271-0525Jullianna Denes Couto6https://orcid.org/0000-0002-0552-3754Sumit Dahal7https://orcid.org/0000-0002-1708-5464Rahul Datta8https://orcid.org/0000-0003-3853-8757Rolando Dünner9https://orcid.org/0000-0003-3892-1860Joseph R. Eimer10https://orcid.org/0000-0001-6976-180XThomas Essinger-Hileman11https://orcid.org/0000-0002-4782-3851Kathleen Harrington12https://orcid.org/0000-0003-1248-9563Jeffrey Iuliano13https://orcid.org/0000-0001-7466-0317Tobias A. Marriage14https://orcid.org/0000-0003-4496-6520Matthew A. Petroff15https://orcid.org/0000-0002-4436-4215Rodrigo A. Reeves16https://orcid.org/0000-0001-5704-271XKarwan Rostem17https://orcid.org/0000-0003-4189-0700Rui Shi18https://orcid.org/0000-0001-7458-6946Deniz A. N. Valle19https://orcid.org/0000-0003-3487-2811Duncan J. Watts20https://orcid.org/0000-0002-5437-6121Oliver F. Wolff21https://orcid.org/0009-0005-0983-986XEdward J. Wollack22https://orcid.org/0000-0002-7567-4451Zhilei Xu23https://orcid.org/0000-0001-5112-2567CLASS CollaborationThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduDepartamento de Ingeniería Eléctrica, Universidad Católica de la Santísima Concepción , Alonso de Ribera 2850, Concepción, ChileDepartment of Physics, Villanova University , 800 Lancaster Avenue, Villanova, PA 19085, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; Department of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USAInstituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile , Avenida Vicuña mackenna 4860, 7820436, Chile; Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna 4860, 7820436, ChileThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduNASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USADepartment of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA; High Energy Physics Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, IL 60439, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; Department of Physics and Astronomy, University of Pennsylvania , 209 South 33rd Street, Philadelphia, PA 19104, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduCenter for Astrophysics , Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USACePIA, Astronomy Department, Universidad de Concepción , Casilla 160-C, Concepción, ChileNASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduInstitute of Theoretical Astrophysics, University of Oslo , P.O. Box 1029 Blindern, NO-0315 Oslo, NorwayDepartment of Physics, University of Illinois at Urbana-Champaign , Urbana, IL 61801, USANASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAMIT Kavli Institute , Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USAThe dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.https://doi.org/10.3847/1538-4357/ad0233Earth's cloudsPolarimetryCosmic microwave background radiation
spellingShingle Yunyang Li
John W. Appel
Charles L. Bennett
Ricardo Bustos
David T. Chuss
Joseph Cleary
Jullianna Denes Couto
Sumit Dahal
Rahul Datta
Rolando Dünner
Joseph R. Eimer
Thomas Essinger-Hileman
Kathleen Harrington
Jeffrey Iuliano
Tobias A. Marriage
Matthew A. Petroff
Rodrigo A. Reeves
Karwan Rostem
Rui Shi
Deniz A. N. Valle
Duncan J. Watts
Oliver F. Wolff
Edward J. Wollack
Zhilei Xu
CLASS Collaboration
CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
The Astrophysical Journal
Earth's clouds
Polarimetry
Cosmic microwave background radiation
title CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
title_full CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
title_fullStr CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
title_full_unstemmed CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
title_short CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
title_sort class observations of atmospheric cloud polarization at millimeter wavelengths
topic Earth's clouds
Polarimetry
Cosmic microwave background radiation
url https://doi.org/10.3847/1538-4357/ad0233
work_keys_str_mv AT yunyangli classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT johnwappel classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT charleslbennett classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT ricardobustos classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT davidtchuss classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT josephcleary classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT julliannadenescouto classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT sumitdahal classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT rahuldatta classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT rolandodunner classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT josephreimer classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT thomasessingerhileman classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT kathleenharrington classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT jeffreyiuliano classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT tobiasamarriage classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT matthewapetroff classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT rodrigoareeves classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT karwanrostem classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT ruishi classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT denizanvalle classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT duncanjwatts classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT oliverfwolff classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT edwardjwollack classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT zhileixu classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths
AT classcollaboration classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths