CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths
The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polari...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/ad0233 |
_version_ | 1797539484902883328 |
---|---|
author | Yunyang Li John W. Appel Charles L. Bennett Ricardo Bustos David T. Chuss Joseph Cleary Jullianna Denes Couto Sumit Dahal Rahul Datta Rolando Dünner Joseph R. Eimer Thomas Essinger-Hileman Kathleen Harrington Jeffrey Iuliano Tobias A. Marriage Matthew A. Petroff Rodrigo A. Reeves Karwan Rostem Rui Shi Deniz A. N. Valle Duncan J. Watts Oliver F. Wolff Edward J. Wollack Zhilei Xu CLASS Collaboration |
author_facet | Yunyang Li John W. Appel Charles L. Bennett Ricardo Bustos David T. Chuss Joseph Cleary Jullianna Denes Couto Sumit Dahal Rahul Datta Rolando Dünner Joseph R. Eimer Thomas Essinger-Hileman Kathleen Harrington Jeffrey Iuliano Tobias A. Marriage Matthew A. Petroff Rodrigo A. Reeves Karwan Rostem Rui Shi Deniz A. N. Valle Duncan J. Watts Oliver F. Wolff Edward J. Wollack Zhilei Xu CLASS Collaboration |
author_sort | Yunyang Li |
collection | DOAJ |
description | The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization. |
first_indexed | 2024-03-10T12:45:40Z |
format | Article |
id | doaj.art-8c96a28aa0a344bf897674e4df59c0f4 |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-03-10T12:45:40Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-8c96a28aa0a344bf897674e4df59c0f42023-11-21T13:29:06ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01958215410.3847/1538-4357/ad0233CLASS Observations of Atmospheric Cloud Polarization at millimeter WavelengthsYunyang Li0https://orcid.org/0000-0002-4820-1122John W. Appel1https://orcid.org/0000-0002-8412-630XCharles L. Bennett2https://orcid.org/0000-0001-8839-7206Ricardo Bustos3https://orcid.org/0000-0001-8468-9391David T. Chuss4https://orcid.org/0000-0003-0016-0533Joseph Cleary5https://orcid.org/0000-0002-7271-0525Jullianna Denes Couto6https://orcid.org/0000-0002-0552-3754Sumit Dahal7https://orcid.org/0000-0002-1708-5464Rahul Datta8https://orcid.org/0000-0003-3853-8757Rolando Dünner9https://orcid.org/0000-0003-3892-1860Joseph R. Eimer10https://orcid.org/0000-0001-6976-180XThomas Essinger-Hileman11https://orcid.org/0000-0002-4782-3851Kathleen Harrington12https://orcid.org/0000-0003-1248-9563Jeffrey Iuliano13https://orcid.org/0000-0001-7466-0317Tobias A. Marriage14https://orcid.org/0000-0003-4496-6520Matthew A. Petroff15https://orcid.org/0000-0002-4436-4215Rodrigo A. Reeves16https://orcid.org/0000-0001-5704-271XKarwan Rostem17https://orcid.org/0000-0003-4189-0700Rui Shi18https://orcid.org/0000-0001-7458-6946Deniz A. N. Valle19https://orcid.org/0000-0003-3487-2811Duncan J. Watts20https://orcid.org/0000-0002-5437-6121Oliver F. Wolff21https://orcid.org/0009-0005-0983-986XEdward J. Wollack22https://orcid.org/0000-0002-7567-4451Zhilei Xu23https://orcid.org/0000-0001-5112-2567CLASS CollaborationThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduDepartamento de Ingeniería Eléctrica, Universidad Católica de la Santísima Concepción , Alonso de Ribera 2850, Concepción, ChileDepartment of Physics, Villanova University , 800 Lancaster Avenue, Villanova, PA 19085, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; NASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; Department of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USAInstituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile , Avenida Vicuña mackenna 4860, 7820436, Chile; Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna 4860, 7820436, ChileThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduNASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USADepartment of Astronomy and Astrophysics, University of Chicago , 5640 South Ellis Avenue, Chicago, IL 60637, USA; High Energy Physics Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, IL 60439, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.edu; Department of Physics and Astronomy, University of Pennsylvania , 209 South 33rd Street, Philadelphia, PA 19104, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduCenter for Astrophysics , Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USACePIA, Astronomy Department, Universidad de Concepción , Casilla 160-C, Concepción, ChileNASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduThe William H. Miller III Department of Physics and Astronomy, Johns Hopkins University , 3701 San Martin Drive, Baltimore, MD 21218, USA ; yunyangl@jhu.eduInstitute of Theoretical Astrophysics, University of Oslo , P.O. Box 1029 Blindern, NO-0315 Oslo, NorwayDepartment of Physics, University of Illinois at Urbana-Champaign , Urbana, IL 61801, USANASA Goddard Space Flight Center , 8800 Greenbelt Road, Greenbelt, MD 20771, USAMIT Kavli Institute , Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USAThe dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.https://doi.org/10.3847/1538-4357/ad0233Earth's cloudsPolarimetryCosmic microwave background radiation |
spellingShingle | Yunyang Li John W. Appel Charles L. Bennett Ricardo Bustos David T. Chuss Joseph Cleary Jullianna Denes Couto Sumit Dahal Rahul Datta Rolando Dünner Joseph R. Eimer Thomas Essinger-Hileman Kathleen Harrington Jeffrey Iuliano Tobias A. Marriage Matthew A. Petroff Rodrigo A. Reeves Karwan Rostem Rui Shi Deniz A. N. Valle Duncan J. Watts Oliver F. Wolff Edward J. Wollack Zhilei Xu CLASS Collaboration CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths The Astrophysical Journal Earth's clouds Polarimetry Cosmic microwave background radiation |
title | CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths |
title_full | CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths |
title_fullStr | CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths |
title_full_unstemmed | CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths |
title_short | CLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths |
title_sort | class observations of atmospheric cloud polarization at millimeter wavelengths |
topic | Earth's clouds Polarimetry Cosmic microwave background radiation |
url | https://doi.org/10.3847/1538-4357/ad0233 |
work_keys_str_mv | AT yunyangli classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT johnwappel classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT charleslbennett classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT ricardobustos classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT davidtchuss classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT josephcleary classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT julliannadenescouto classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT sumitdahal classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT rahuldatta classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT rolandodunner classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT josephreimer classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT thomasessingerhileman classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT kathleenharrington classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT jeffreyiuliano classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT tobiasamarriage classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT matthewapetroff classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT rodrigoareeves classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT karwanrostem classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT ruishi classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT denizanvalle classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT duncanjwatts classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT oliverfwolff classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT edwardjwollack classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT zhileixu classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths AT classcollaboration classobservationsofatmosphericcloudpolarizationatmillimeterwavelengths |