Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing

Material extrusion additive manufacturing (ME-AM) techniques have been recently introduced for core–shell polymer manufacturing. Using ME-AM for core–shell manufacturing offers improved mechanical properties and dimensional accuracy over conventional 3D-printed polymer. Operating parameters play an...

Full description

Bibliographic Details
Main Authors: Hamid Narei, Maryam Fatehifar, Ashley Howard Malt, John Bissell, Mohammad Souri, Mohammad Nasr Esfahani, Masoud Jabbari
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/3/476
_version_ 1797416217413156864
author Hamid Narei
Maryam Fatehifar
Ashley Howard Malt
John Bissell
Mohammad Souri
Mohammad Nasr Esfahani
Masoud Jabbari
author_facet Hamid Narei
Maryam Fatehifar
Ashley Howard Malt
John Bissell
Mohammad Souri
Mohammad Nasr Esfahani
Masoud Jabbari
author_sort Hamid Narei
collection DOAJ
description Material extrusion additive manufacturing (ME-AM) techniques have been recently introduced for core–shell polymer manufacturing. Using ME-AM for core–shell manufacturing offers improved mechanical properties and dimensional accuracy over conventional 3D-printed polymer. Operating parameters play an important role in forming the overall quality of the 3D-printed manufactured products. Here we use numerical simulations within the framework of computation fluid dynamics (CFD) to identify the best combination of operating parameters for the 3D printing of a core–shell polymer strand. The objectives of these CFD simulations are to find strands with an ultimate volume fraction of core polymer. At the same time, complete encapsulations are obtained for the core polymer inside the shell one. In this model, the deposition flow is controlled by three dimensionless parameters: (i) the diameter ratio of core material to the nozzle, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>/</mo><mi>D</mi></mrow></semantics></math></inline-formula>; (ii) the normalised gap between the extruder and the build plate, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>/</mo><mi>D</mi></mrow></semantics></math></inline-formula>; (iii) the velocity ratio of the moving build plate to the average velocity inside the nozzle, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><mi>U</mi></mrow></semantics></math></inline-formula>. Numerical results of the deposited strands’ cross-sections demonstrate the effects of controlling parameters on the encapsulation of the core material inside the shell and the shape and size of the strand. Overall we find that the best operating parameters are a diameter ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>0.7</mn></mrow></semantics></math></inline-formula>, a normalised gap of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and a velocity ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><mi>U</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T06:00:17Z
format Article
id doaj.art-8c9f116d9b424be88e05d435a910ca09
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-09T06:00:17Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-8c9f116d9b424be88e05d435a910ca092023-12-03T12:09:21ZengMDPI AGPolymers2073-43602021-02-0113347610.3390/polym13030476Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive ManufacturingHamid Narei0Maryam Fatehifar1Ashley Howard Malt2John Bissell3Mohammad Souri4Mohammad Nasr Esfahani5Masoud Jabbari6Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, IranDepartment of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UKHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Electronic Engineering, University of York, York YO10 5DD, UKHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Electronic Engineering, University of York, York YO10 5DD, UKDepartment of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UKMaterial extrusion additive manufacturing (ME-AM) techniques have been recently introduced for core–shell polymer manufacturing. Using ME-AM for core–shell manufacturing offers improved mechanical properties and dimensional accuracy over conventional 3D-printed polymer. Operating parameters play an important role in forming the overall quality of the 3D-printed manufactured products. Here we use numerical simulations within the framework of computation fluid dynamics (CFD) to identify the best combination of operating parameters for the 3D printing of a core–shell polymer strand. The objectives of these CFD simulations are to find strands with an ultimate volume fraction of core polymer. At the same time, complete encapsulations are obtained for the core polymer inside the shell one. In this model, the deposition flow is controlled by three dimensionless parameters: (i) the diameter ratio of core material to the nozzle, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>/</mo><mi>D</mi></mrow></semantics></math></inline-formula>; (ii) the normalised gap between the extruder and the build plate, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>/</mo><mi>D</mi></mrow></semantics></math></inline-formula>; (iii) the velocity ratio of the moving build plate to the average velocity inside the nozzle, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><mi>U</mi></mrow></semantics></math></inline-formula>. Numerical results of the deposited strands’ cross-sections demonstrate the effects of controlling parameters on the encapsulation of the core material inside the shell and the shape and size of the strand. Overall we find that the best operating parameters are a diameter ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>0.7</mn></mrow></semantics></math></inline-formula>, a normalised gap of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and a velocity ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>/</mo><mi>U</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-4360/13/3/476material extrusionadditive manufacturingcore–shell polymer strandprocessing parametersCFD
spellingShingle Hamid Narei
Maryam Fatehifar
Ashley Howard Malt
John Bissell
Mohammad Souri
Mohammad Nasr Esfahani
Masoud Jabbari
Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
Polymers
material extrusion
additive manufacturing
core–shell polymer strand
processing parameters
CFD
title Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
title_full Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
title_fullStr Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
title_full_unstemmed Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
title_short Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
title_sort numerical simulation of a core shell polymer strand in material extrusion additive manufacturing
topic material extrusion
additive manufacturing
core–shell polymer strand
processing parameters
CFD
url https://www.mdpi.com/2073-4360/13/3/476
work_keys_str_mv AT hamidnarei numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT maryamfatehifar numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT ashleyhowardmalt numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT johnbissell numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT mohammadsouri numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT mohammadnasresfahani numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing
AT masoudjabbari numericalsimulationofacoreshellpolymerstrandinmaterialextrusionadditivemanufacturing