Mathematical Modelling of the Evaporating Liquid Films on the Basis of the Generalized Interface Conditions

The two-dimensional films, flowing down an inclined, non-uniformly heated substrate are studied. The results contain the new mathematical models developed with the help of the long-wave approximation of the Navier-Stokes and heat transfer equations or Oberbeck-Boussinesq equations in the case, when...

Full description

Bibliographic Details
Main Authors: Goncharova Olga, Rezanova Ekaterina
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20168400013
Description
Summary:The two-dimensional films, flowing down an inclined, non-uniformly heated substrate are studied. The results contain the new mathematical models developed with the help of the long-wave approximation of the Navier-Stokes and heat transfer equations or Oberbeck-Boussinesq equations in the case, when the generalized conditions are formulated at thermocapillary interface. The evolution equations for the film thickness include the effects of gravity, viscosity, capillarity, thermocapillarity, additional stress effects and evaporation.
ISSN:2261-236X