U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation

Most scenes in practical applications are dynamic scenes containing moving objects, so accurately segmenting moving objects is crucial for many computer vision applications. In order to efficiently segment all the moving objects in the scene, regardless of whether the object has a predefined semanti...

Full description

Bibliographic Details
Main Authors: Chenjie Wang, Chengyuan Li, Jun Liu, Bin Luo, Xin Su, Yajun Wang, Yan Gao
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/1/60
_version_ 1797543445099708416
author Chenjie Wang
Chengyuan Li
Jun Liu
Bin Luo
Xin Su
Yajun Wang
Yan Gao
author_facet Chenjie Wang
Chengyuan Li
Jun Liu
Bin Luo
Xin Su
Yajun Wang
Yan Gao
author_sort Chenjie Wang
collection DOAJ
description Most scenes in practical applications are dynamic scenes containing moving objects, so accurately segmenting moving objects is crucial for many computer vision applications. In order to efficiently segment all the moving objects in the scene, regardless of whether the object has a predefined semantic label, we propose a two-level nested octave U-structure network with a multi-scale attention mechanism, called U<sup>2</sup>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula>. <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> takes two RGB frames, the optical flow between these frames, and the instance segmentation of the frames as inputs. Each stage of <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> is filled with the newly designed octave residual U-block (ORSU block) to enhance the ability to obtain more contextual information at different scales while reducing the spatial redundancy of the feature maps. In order to efficiently train the multi-scale deep network, we introduce a hierarchical training supervision strategy that calculates the loss at each level while adding knowledge-matching loss to keep the optimization consistent. The experimental results show that the proposed <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> method can achieve a state-of-the-art performance in several general moving object segmentation datasets.
first_indexed 2024-03-10T13:45:39Z
format Article
id doaj.art-8cbadc47bc5141b3a8dca97759d57808
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T13:45:39Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-8cbadc47bc5141b3a8dca97759d578082023-11-21T02:37:52ZengMDPI AGRemote Sensing2072-42922020-12-011316010.3390/rs13010060U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object SegmentationChenjie Wang0Chengyuan Li1Jun Liu2Bin Luo3Xin Su4Yajun Wang5Yan Gao6State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaState Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaState Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaState Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaSchool of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaState Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, ChinaZhuhai Da Hengqin Science and Technology Development Co., Ltd., Unit 1, 33 Haihe Street, Hengqin New Area, Zhuhai 519031, ChinaMost scenes in practical applications are dynamic scenes containing moving objects, so accurately segmenting moving objects is crucial for many computer vision applications. In order to efficiently segment all the moving objects in the scene, regardless of whether the object has a predefined semantic label, we propose a two-level nested octave U-structure network with a multi-scale attention mechanism, called U<sup>2</sup>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula>. <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> takes two RGB frames, the optical flow between these frames, and the instance segmentation of the frames as inputs. Each stage of <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> is filled with the newly designed octave residual U-block (ORSU block) to enhance the ability to obtain more contextual information at different scales while reducing the spatial redundancy of the feature maps. In order to efficiently train the multi-scale deep network, we introduce a hierarchical training supervision strategy that calculates the loss at each level while adding knowledge-matching loss to keep the optimization consistent. The experimental results show that the proposed <inline-formula><math display="inline"><semantics><msup><mi mathvariant="normal">U</mi><mn>2</mn></msup></semantics></math></inline-formula>-ONe<inline-formula><math display="inline"><semantics><mi mathvariant="normal">t</mi></semantics></math></inline-formula> method can achieve a state-of-the-art performance in several general moving object segmentation datasets.https://www.mdpi.com/2072-4292/13/1/60moving object segmentationoctave convolutionnested U-structurehierarchical supervision
spellingShingle Chenjie Wang
Chengyuan Li
Jun Liu
Bin Luo
Xin Su
Yajun Wang
Yan Gao
U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
Remote Sensing
moving object segmentation
octave convolution
nested U-structure
hierarchical supervision
title U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
title_full U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
title_fullStr U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
title_full_unstemmed U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
title_short U<sup>2</sup>-ONet: A Two-Level Nested Octave U-Structure Network with a Multi-Scale Attention Mechanism for Moving Object Segmentation
title_sort u sup 2 sup onet a two level nested octave u structure network with a multi scale attention mechanism for moving object segmentation
topic moving object segmentation
octave convolution
nested U-structure
hierarchical supervision
url https://www.mdpi.com/2072-4292/13/1/60
work_keys_str_mv AT chenjiewang usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT chengyuanli usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT junliu usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT binluo usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT xinsu usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT yajunwang usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation
AT yangao usup2suponetatwolevelnestedoctaveustructurenetworkwithamultiscaleattentionmechanismformovingobjectsegmentation