Epileptic Seizure Classification Based on Random Neural Networks Using Discrete Wavelet Transform for Electroencephalogram Signal Decomposition

An epileptic seizure is a brief episode of symptoms and signs caused by excessive electrical activity in the brain. One of the major chronic neurological diseases, epilepsy, affects millions of individuals worldwide. Effective detection of seizure events is critical in the diagnosis and treatment of...

Full description

Bibliographic Details
Main Authors: Syed Yaseen Shah, Hadi Larijani, Ryan M. Gibson, Dimitrios Liarokapis
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/2/599
Description
Summary:An epileptic seizure is a brief episode of symptoms and signs caused by excessive electrical activity in the brain. One of the major chronic neurological diseases, epilepsy, affects millions of individuals worldwide. Effective detection of seizure events is critical in the diagnosis and treatment of patients with epilepsy. Neurologists monitor the electrical activity in the brains of patients to identify epileptic seizures by employing advanced sensing techniques, including electroencephalograms and electromyography. Machine learning-based classification of the EEG signal can help differentiate between normal signals and the patterns associated with epileptic seizures. This work presents a novel approach for the classification of epileptic seizures using random neural network (RNN). The proposed model has been trained and tested using two publicly available datasets: CHB-MIT and BONN, provided by Children’s Hospital Boston-Massachusetts Institute of Technology and the University of Bonn, respectively. The results obtained from multiple experiments highlight that the proposed scheme outperformed traditional classification schemes such as artificial neural network and support vector machine. The proposed RNN-based model achieved accuracies of 93.27% and 99.84% on the CHB-MIT and BONN datasets, respectively.
ISSN:2076-3417