Summary: | We report on a novel optical microcavity sensing scheme by using the orthogonal demodulation Pound−Drever−Hall (PDH) technique. We found that larger sensitivity in a broad range of cavity quality factor (Q) could be obtained. Taking microbubble resonator (MBR) pressure sensing as an example, a lower detection limit than the conventional wavelength shift detection method was achieved. When the MBR cavity Q is about 10<sup>5</sup>−10<sup>6</sup>, the technique can decrease the detection limit by one or two orders of magnitude. The pressure-frequency sensitivity is 11.6 GHz/bar at wavelength of 850 nm, and its detection limit can approach 0.0515 mbar. This technique can also be applied to other kinds of microcavity sensors to improve sensing performance.
|