A Flexible Strain Sensor Based on a Conductive Polymer Composite for in situ Measurement of Parachute Canopy Deformation

A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and o...

Full description

Bibliographic Details
Main Authors: Vladan Koncar, Maryline Lewandowski, Cédric Cochrane
Format: Article
Language:English
Published: MDPI AG 2010-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/10/9/8291/
Description
Summary:A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%.
ISSN:1424-8220