Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms

In this article, we derive Chen’s inequalities involving Chen’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-invariant <inline-formula...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Mohan Khatri, Jay Prakash Singh, Sudhakar K. Chaubey
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/7/324
_version_ 1797440891342815232
author Yanlin Li
Mohan Khatri
Jay Prakash Singh
Sudhakar K. Chaubey
author_facet Yanlin Li
Mohan Khatri
Jay Prakash Singh
Sudhakar K. Chaubey
author_sort Yanlin Li
collection DOAJ
description In this article, we derive Chen’s inequalities involving Chen’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>M</mi></msub></semantics></math></inline-formula>, Riemannian invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><msub><mi>m</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>m</mi><mi>k</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, Ricci curvature, Riemannian invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="bold-sans-serif">Θ</mi><mi>k</mi></msub><mrow><mo>(</mo><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the scalar curvature and the squared of the mean curvature for submanifolds of generalized Sasakian-space-forms endowed with a quarter-symmetric connection. As an application of the obtain inequality, we first derived the Chen inequality for the bi-slant submanifold of generalized Sasakian-space-forms.
first_indexed 2024-03-09T12:14:58Z
format Article
id doaj.art-8cf816e918ab424b88243ee85e5cb299
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T12:14:58Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-8cf816e918ab424b88243ee85e5cb2992023-11-30T22:47:41ZengMDPI AGAxioms2075-16802022-07-0111732410.3390/axioms11070324Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-FormsYanlin Li0Mohan Khatri1Jay Prakash Singh2Sudhakar K. Chaubey3School of Mathematics, Hangzhou Normal University, Hangzhou 311121, ChinaDepartment of Mathematics and Computer Science, Mizoram University, Aizawl 796004, IndiaDepartment of Mathematics and Computer Science, Mizoram University, Aizawl 796004, IndiaDepartment of Information Technology, University of Technology and Applied Sciences, P.O. Box 77, Shinas 324, OmanIn this article, we derive Chen’s inequalities involving Chen’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>M</mi></msub></semantics></math></inline-formula>, Riemannian invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mo>(</mo><msub><mi>m</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>m</mi><mi>k</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, Ricci curvature, Riemannian invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="bold-sans-serif">Θ</mi><mi>k</mi></msub><mrow><mo>(</mo><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>m</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the scalar curvature and the squared of the mean curvature for submanifolds of generalized Sasakian-space-forms endowed with a quarter-symmetric connection. As an application of the obtain inequality, we first derived the Chen inequality for the bi-slant submanifold of generalized Sasakian-space-forms.https://www.mdpi.com/2075-1680/11/7/324Chen inequalitiesquarter-symmetric connectiongeneralized Sasakian-space-formbi-slantRiemannian invariants
spellingShingle Yanlin Li
Mohan Khatri
Jay Prakash Singh
Sudhakar K. Chaubey
Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
Axioms
Chen inequalities
quarter-symmetric connection
generalized Sasakian-space-form
bi-slant
Riemannian invariants
title Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
title_full Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
title_fullStr Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
title_full_unstemmed Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
title_short Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms
title_sort improved chen s inequalities for submanifolds of generalized sasakian space forms
topic Chen inequalities
quarter-symmetric connection
generalized Sasakian-space-form
bi-slant
Riemannian invariants
url https://www.mdpi.com/2075-1680/11/7/324
work_keys_str_mv AT yanlinli improvedchensinequalitiesforsubmanifoldsofgeneralizedsasakianspaceforms
AT mohankhatri improvedchensinequalitiesforsubmanifoldsofgeneralizedsasakianspaceforms
AT jayprakashsingh improvedchensinequalitiesforsubmanifoldsofgeneralizedsasakianspaceforms
AT sudhakarkchaubey improvedchensinequalitiesforsubmanifoldsofgeneralizedsasakianspaceforms