The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The r...

Full description

Bibliographic Details
Main Authors: David C. Brown, Sten Tornegård, Joseph Kolis, Colin McMillen, Cheryl Moore, Liurukara Sanjeewa, Christopher Hancock
Format: Article
Language:English
Published: MDPI AG 2016-01-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/6/1/23
Description
Summary:Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.
ISSN:2076-3417