Systematic review of head cooling in adults after traumatic brain injury and stroke
Background: Brain injuries resulting from trauma and stroke are common and costly. Cooling therapy may reduce damage and potentially improve outcome. Head cooling targets the site of injury and may have fewer side effects than systemic cooling, but there has been no systematic review and the evidenc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
NIHR Journals Library
2012-11-01
|
Series: | Health Technology Assessment |
Subjects: | |
Online Access: | https://doi.org/10.3310/hta16450 |
Summary: | Background: Brain injuries resulting from trauma and stroke are common and costly. Cooling therapy may reduce damage and potentially improve outcome. Head cooling targets the site of injury and may have fewer side effects than systemic cooling, but there has been no systematic review and the evidence base is unclear. Objective: To assess the effect of non-invasive head cooling after traumatic brain injury (TBI) and stroke on intracranial and/or core body temperature, functional outcome and mortality, determine adverse effects and evaluate cost-effectiveness. Review methods Results: Out of 46 head-cooling studies in TBI and stroke, there were no RCTs of suitable quality for formal outcome analysis. Twelve studies had useable data on intracranial and core body temperature. These included 99 patients who were cooled after TBI or stroke and 198 patients cooled after cardiac arrest. The data were too heterogeneous for a single summary measure of effect (many studies had no measure of spread) and are therefore presented descriptively. The most effective techniques for which there were adequate data (nasal coolant and liquid cooling helmets) could reduce intracranial temperature by ≥ 1 °C in 1 hour. The main device-related adverse effects were localised skin problems, which were generally mild and self-limiting. There were no suitable data for economic modelling, but an exploratory model of possible treatment effects and cost-effectiveness of head cooling in TBI was created using local patient data. Limitations: We conducted extensive and sensitive searches but found no good-quality RCTs of the effect of head cooling on functional outcome that met the review inclusion criteria. Most trials were small and/or of low methodological quality. However, if the trial reports did not reflect the true quality of the research, there may be some excluded trials that should have been included. Temperature data were often poorly reported which made it difficult to assess the effect of head cooling on temperature. Conclusions: Whether head cooling improves functional outcome or has benefits and fewer side effects compared with systemic cooling or no cooling could not be established. Some methods of head cooling can reduce intracranial temperature, which is an important first step in determining effectiveness, but there is insufficient evidence to recommend its use outside of research trials. The principal recommendations for research are that active cooling devices show the most promise for further investigation and more robust proof of concept of intracranial and core body temperature reduction with head cooling is required, clearly showing whether temperature has changed and by how much. Funding: The National Institute for Health Research Health Technology Assessment programme. |
---|---|
ISSN: | 1366-5278 2046-4924 |