Rapid construction of metabolite biosensors using domain-insertion profiling

In the construction of single fluorescent protein biosensors, selection of the insertion point of a fluorescent protein into a ligand-binding domain is a rate-limiting step. Here, the authors develop an unbiased, high-throughput approach, called domain insertion profiling with DNA sequencing (DIP-se...

Full description

Bibliographic Details
Main Authors: Dana C. Nadler, Stacy-Anne Morgan, Avi Flamholz, Kaitlyn E. Kortright, David F. Savage
Format: Article
Language:English
Published: Nature Portfolio 2016-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/ncomms12266
_version_ 1818716863871320064
author Dana C. Nadler
Stacy-Anne Morgan
Avi Flamholz
Kaitlyn E. Kortright
David F. Savage
author_facet Dana C. Nadler
Stacy-Anne Morgan
Avi Flamholz
Kaitlyn E. Kortright
David F. Savage
author_sort Dana C. Nadler
collection DOAJ
description In the construction of single fluorescent protein biosensors, selection of the insertion point of a fluorescent protein into a ligand-binding domain is a rate-limiting step. Here, the authors develop an unbiased, high-throughput approach, called domain insertion profiling with DNA sequencing (DIP-seq), to generate a novel trehalose biosensor.
first_indexed 2024-12-17T19:26:01Z
format Article
id doaj.art-8d05fc327b244948b82af826e79987c9
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-17T19:26:01Z
publishDate 2016-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-8d05fc327b244948b82af826e79987c92022-12-21T21:35:23ZengNature PortfolioNature Communications2041-17232016-07-017111110.1038/ncomms12266Rapid construction of metabolite biosensors using domain-insertion profilingDana C. Nadler0Stacy-Anne Morgan1Avi Flamholz2Kaitlyn E. Kortright3David F. Savage4Department of Molecular & Cell Biology, University of CaliforniaDepartment of Molecular & Cell Biology, University of CaliforniaDepartment of Molecular & Cell Biology, University of CaliforniaDepartment of Molecular & Cell Biology, University of CaliforniaDepartment of Molecular & Cell Biology, University of CaliforniaIn the construction of single fluorescent protein biosensors, selection of the insertion point of a fluorescent protein into a ligand-binding domain is a rate-limiting step. Here, the authors develop an unbiased, high-throughput approach, called domain insertion profiling with DNA sequencing (DIP-seq), to generate a novel trehalose biosensor.https://doi.org/10.1038/ncomms12266
spellingShingle Dana C. Nadler
Stacy-Anne Morgan
Avi Flamholz
Kaitlyn E. Kortright
David F. Savage
Rapid construction of metabolite biosensors using domain-insertion profiling
Nature Communications
title Rapid construction of metabolite biosensors using domain-insertion profiling
title_full Rapid construction of metabolite biosensors using domain-insertion profiling
title_fullStr Rapid construction of metabolite biosensors using domain-insertion profiling
title_full_unstemmed Rapid construction of metabolite biosensors using domain-insertion profiling
title_short Rapid construction of metabolite biosensors using domain-insertion profiling
title_sort rapid construction of metabolite biosensors using domain insertion profiling
url https://doi.org/10.1038/ncomms12266
work_keys_str_mv AT danacnadler rapidconstructionofmetabolitebiosensorsusingdomaininsertionprofiling
AT stacyannemorgan rapidconstructionofmetabolitebiosensorsusingdomaininsertionprofiling
AT aviflamholz rapidconstructionofmetabolitebiosensorsusingdomaininsertionprofiling
AT kaitlynekortright rapidconstructionofmetabolitebiosensorsusingdomaininsertionprofiling
AT davidfsavage rapidconstructionofmetabolitebiosensorsusingdomaininsertionprofiling