Summary: | Two simple graphs are commutative if there exists a labelling of their vertices such that their adjacency matrices can commute. This paper gives three necessary conditions ensuring the commutativity of certain graphs from Perron vectors, the number of main eigenvalues, the regularity of graphs. Then we construct new commutative graphs by graph Kronecker product, Cartesian product and circulant matrix. Finally, for two commutative graphs, we provide two algorithms that can express one adjacency matrix as the matrix polynomial of another adjacency matrix with distinct eigenvalues, and compare their merits. Commutative graphs sharing common eigenvectors are essential to the study of spectral graph theory.(如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图。最后,将一个邻接矩阵表示为另一个特征值互异的邻接矩阵的矩阵多项式,给出了2种算法,并比较了二者的优劣。可交换图存在公共的特征向量,对图谱理论研究具有重要意义。)
|