Numerical 3D Modeling: Microwave Plasma Torch at Intermediate Pressure

This study represents a self-consistent three-dimensional (3D) fluid plasma model coupled with Maxwell equations at an intermediate pressure between 1000 and 5000 Pa. The model was established using the finite element method to analyze the effects of time–space characteristics, which is the variatio...

Full description

Bibliographic Details
Main Authors: Qinghao Shen, Run Huang, Zili Xu, Wei Hua
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/15/5393
Description
Summary:This study represents a self-consistent three-dimensional (3D) fluid plasma model coupled with Maxwell equations at an intermediate pressure between 1000 and 5000 Pa. The model was established using the finite element method to analyze the effects of time–space characteristics, which is the variation of plasma parameters with time and the 3D spatial distribution of plasma parameters in the plasma torch at various times. The numerical modeling was demonstrated in three different stages, where the growth of electron density is associated with time. From the distribution characteristics of molecular ions, it can be concluded that they are distributed mainly at the port of the quartz tube of the torch, which is larger than the center of the tube. The density ratio of molecular ion to electron is decreased because of the reduction of pressure and distance, which has been calculated from the port to the center of the quartz tube. The analysis of microwave plasma parameters indicated that intermediate pressure is useful for modeling and plasma source designing, especially for carbon dioxide conversion.
ISSN:2076-3417