Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity
In this paper, we study the shape of bifurcation curve $S_{L}$ of positive solutions for the Minkowski-curvature problem \begin{equation*} \begin{cases} -\left( \dfrac{u^{\prime }(x)}{\sqrt{1-\left( {u^{\prime }(x)}\right) ^{2}}} \right) ^{\prime }=\lambda \left( -\varepsilon u^{3}+u^{2}+u+1\right)...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2021-05-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9091 |
Summary: | In this paper, we study the shape of bifurcation curve $S_{L}$ of positive solutions for the Minkowski-curvature problem
\begin{equation*}
\begin{cases}
-\left( \dfrac{u^{\prime }(x)}{\sqrt{1-\left( {u^{\prime }(x)}\right) ^{2}}}
\right) ^{\prime }=\lambda \left( -\varepsilon u^{3}+u^{2}+u+1\right) ,& -L<x<L, \\
u(-L)=u(L)=0,
\end{cases}
\end{equation*}
where $\lambda ,\varepsilon >0$ are bifurcation parameters and $L>0$ is an evolution parameter. We prove that there exists $\varepsilon _{0}>0$ such that the bifurcation curve $S_{L}$ is monotone increasing for all $L>0$ if $ \varepsilon \geq \varepsilon _{0}$, and the bifurcation curve $S_{L}$ is from monotone increasing to S-shaped for varying $L>0$ if $0<\varepsilon
<\varepsilon _{0}.$ |
---|---|
ISSN: | 1417-3875 |