Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology

Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we a...

Full description

Bibliographic Details
Main Authors: Graziamaria Corbi, Marika Comegna, Caterina Vinciguerra, Alessio Capasso, Luigi Onorato, Alfonso Maria Salucci, Antonio Rapacciuolo, Alessandro Cannavo
Format: Article
Language:English
Published: Elsevier 2024-06-01
Series:Experimental Gerontology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0531556524000627
Description
Summary:Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences.Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
ISSN:1873-6815