Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.

This work reports the use of layer analysis to aid the fluorescence lifetime diagnosis of cervical intraepithelial neoplasia (CIN) from H&E stained cervical tissue sections. The mean and standard deviation of lifetimes in single region of interest (ROI) of cervical epithelium were previously sho...

Full description

Bibliographic Details
Main Authors: Jun Gu, Chit Yaw Fu, Beng Koon Ng, Lin Bo Liu, Soo Kim Lim-Tan, Caroline Guat Lay Lee
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0125706
Description
Summary:This work reports the use of layer analysis to aid the fluorescence lifetime diagnosis of cervical intraepithelial neoplasia (CIN) from H&E stained cervical tissue sections. The mean and standard deviation of lifetimes in single region of interest (ROI) of cervical epithelium were previously shown to correlate to the gold standard histopathological classification of early cervical cancer. These previously defined single ROIs were evenly divided into layers for analysis. A 10-layer model revealed a steady increase in fluorescence lifetime from the inner to the outer epithelial layers of healthy tissue sections, suggesting a close association with cellular maturity. The shorter lifetime and minimal lifetime increase towards the epithelial surface of CIN-affected regions are in good agreement with the absence of cellular maturation in CIN. Mean layer lifetimes in the top-half cervical epithelium were used as feature vectors for extreme learning machine (ELM) classifier discriminations. It was found that the proposed layer analysis technique greatly improves the sensitivity and specificity to 94.6% and 84.3%, respectively, which can better supplement the traditional gold standard cervical histopathological examinations.
ISSN:1932-6203