Deformation of Halley method under hypotheses on the first Fréchet-derivative(在一阶Fréchet可微条件下的变形Halley法)
介绍了一族从三阶收敛的Halley法得到的二步法来近似Banach空间中非线性方程的解.在与Newton法收敛相同的Lipschitz条件下,通过使用一个新的递归关系,证明变形Halley法收敛,并给出了非线性算子方程的解的存在惟一性定理.
Main Author: | ZHANGZhen(张镇) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2003-05-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2003.30.3.260-262 |
Similar Items
-
Convergence for a family of iterations which an avoid the computation of the second Frechet-derirative under the Lipschitz condition(避免二阶导数计值的迭代族在一阶Frechet可微条件下的收敛性)
by: LIUJing(刘静)
Published: (2005-11-01) -
Analyse of convergence about modified Halley's method and its application(修正Halley法的收敛性分析及其应用)
by: JIANGDong-dong(蒋冬冬)
Published: (2003-07-01) -
Note on weaker convergence conditions for Newton iteration(弱收敛条件下的Newton迭代)
by: ZHANGZhen(张镇)
Published: (2003-03-01) -
Convergence of Halley's method under centered Lipschitz condition on the second Fréchet derivative
by: Ioannis K. Argyros, et al.
Published: (2013-02-01) -
Convergence of Halley's method under centered Lipschitz condition on the second Fréchet derivative
by: Ioannis K. Argyros, et al.
Published: (2013-02-01)