The synthesis of well-defined poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization

We describe the use of one of the most advanced radical polymerization techniques, the reversible addition fragmentation chain transfer (RAFT) process, to produce highly functional core–shell particles based on a silica core and a shell made of functional polymeric chains with very well controlled s...

Full description

Bibliographic Details
Main Authors: John Moraes, Kohji Ohno, Guillaume Gody, Thomas Maschmeyer, Sébastien Perrier
Format: Article
Language:English
Published: Beilstein-Institut 2013-06-01
Series:Beilstein Journal of Organic Chemistry
Subjects:
Online Access:https://doi.org/10.3762/bjoc.9.139
Description
Summary:We describe the use of one of the most advanced radical polymerization techniques, the reversible addition fragmentation chain transfer (RAFT) process, to produce highly functional core–shell particles based on a silica core and a shell made of functional polymeric chains with very well controlled structure. The versatility of RAFT polymerization is illustrated by the control of the polymerization of vinylbenzyl chloride (VBC), a highly functional monomer, with the aim of designing silica core–poly(VBC) shell nanoparticles. Optimal conditions for the control of VBC polymerization by RAFT are first established, followed by the use of the “grafting from” method to yield polymeric brushes that form a well-defined shell surrounding the silica core. We obtain particles that are monodisperse in size, and we demonstrate that the exceptional control over their dimensions is achieved by careful tailoring the conditions of the radical polymerization.
ISSN:1860-5397